Critical issues in electrolyte and acid-base disturbance

Atiporn Ingsathit MD. PhD.

Topics

Hyponatremia
Hypernatemia
Hypokalemia
Hyperkalemia
Metabolic acidosis

Hyponatremic patient

Find truly hypo-osmotic hyponatremia

Exclude

Translocational hyponatremia

Pseudohyponatremia

Translocational hyponatremia

Hypertonic hyponatremia
 High plasma osmolality
 Increase in effective osmolality

- glucose in insulinopenic state
- manitol, maltose, glycine

Psudohyponatremia

Normal plasma osmolality

Pathway of water balance

Hypo-osmotic hyponatremia

Impaired capacity of renal water excretion

Water intake

Pathways of AVP release

Regulation of AVP secretion

Aquaporins (AQP) Water channel

> AQP1 Noble Prize in 2003 Agre and colleaques

	AQP-1	AQP-2	AQP-3	AQP-4
Size Amino acid	269	271	285	301
Permeability to small solute	No	No	Urea glycol	No
Regulation by AVP	No	Yes	No	No
Site	Descending thin limb	Collecting duct; principal cells	-Medullary collecting duct -colon	-Hypothalamus -Collecting duct
Cellular localization	Apical & basolateral membrane	Apical mb & intracellular vesicles	Basolateral mb	Basolateral mb of principal cells
Function	Water channels	Water channels	water exit from cell	-water exit from cell -osmoreceptor

Diagnosis of hyponatremia

Assessment of volume status

- Clinical examination
- Biochemical markers
- □ IVC diameter

Clinical assessment Intravascular volume depletion

□ Signs:

- A fast pulse
- Infrequent and low volume urination
- Dry mucous membranes (e.g. a dry tongue)
- Poor capillary refill (e.g. when the patient's fingertip is pressed, the skin turns white, but upon release, the skin does not return to pink as fast as it should)
- Decreased skin turgor
- A weak pulse
 - Orthostatic hypotension (dizziness upon standing up from a seated or reclining position, due to a drop in cerebral blood pressure)
 - Cool extremities (e.g. cool fingers)

Poor capillary refill

Adult

Decreased skin turgor

Clinical assessment Intravascular volume overload

Signs:

- An elevated Jugular venous pressure (JVP)
- Generalize edema
- Pulmonary edema, rales or crepitation, heard initially in the lung bases
- Pleural effusion
- Ascites

Jugular venous pressure (JVP)

Volume overload

Pulmonary edema

		A N
	Cephalization of vessels	
	Bronchial cuffing	
Kerley B lines		
	Hilar vasculature congestion	
		Kerley B lines
Alfred St.	Cardiomegaly	

Biochemical markers

- Atrial natriuretic peptide (ANP)
- Brain natriuretic peptide (BNP)
 - Increased levels → marker of volume overload
 - Normalization → the achievement of dry weight

IVC diameter

□ Collapse index (CI)

Minimum diameter – inspiration

Maximum diameter - expiration

Diagnosis of Hyponatremia

History

Fluid loss

One of the causes of SIADH

Cancer, CNS disorders, Drugs, pulmonary conditions, pain/nausea

Symptoms of adrenal insufficiency or hypothyroidism

Signs

Volume depletion

Edema/Ascites

Adrenal insufficiency or hypothyroidism

Plasma AVP ?

Case I

60-year-old man with a history of schizophrenia, who presents with severe right lower quadrant pain is admitted for appendectomy. He did not take any medication for 2 years.

🗆 Lab

Na 116 mmol/l K 4.0 mmol/l Cl 106 mmol/l HCO₃ 24 mmol/l

Evaluation :

Hydration status : no hypovolemia

no edema

euvolemia

Urine Na 60, K 10 mmol/l

Serum Osmolarity = 245 mOsm/Kg

Urine Osmolarity = 450 mOsm/Kg

Diagnosis: SIADH

- Criteria 1. Hypoosmolarity
 - 2. Euvolemia (mild degree overhydration)
 - 3. Urine osmolarity not maximally diluted
 - 4. Normal renal function
 - 5. No evidence of drug induced
 - hyponatremia
 - 6. Normal cortisol and TFT

Management

1. Fluid restriction VERSUS hypertonic solution

2. Rate of correction

Osmotic demyelination syndrome

Calculation of sodium deficit

- A mildly symptomatic 60 kg women has a plasma sodium concentration of 116 meq/L. The goal is to raise the plasma sodium concentration by 8 meq/L in the first 24 hours.
- The sodium deficit (in meq) for initial therapy is estimated to be:
 - = 0.5 x 60 x (124 116) = 240 meq

- Use 3% NaCl
 - 0.5 mEq of Na = 1 ml
 - 240 mEq of Na = 480 ml
- \Box Rate of correction = 480 ml/24 hr
 - An initial rate = 20 ml/hr

which would be expected to raise the plasma sodium concentration at the desired rate of 8 meq/L during the first day
Hypernatremia

- □ 60 year old male with ARDS/intubated//TPN
- Dehydrate, BP = 110/70 mmHg, HR 85/min.

Lab

- Plasma Na 150 mmol/l, glucose 400 mg/dl
- Urine output 150 ml/hr
- Urine osmolarity = 504
- Urine Na = 40 mmol/l
- \Box Urine dip stick = 2+ glucose

Hypernatremia

Free Water Intake

Ļ

Free Water Loss

Decreased free water supply

- Water loss
 - Osmotic diuresis, D.I.
 - Osmotic diarrhea
 - Insensible
- Solute load

Major causes of hypernatremia

- Unreplaced water loss (which requires an impairment in thirst or access to water)
 - Insensible and sweat losses
 - Gastrointestinal losses
 - Central or nephrogenic diabetes insipidus
 - Osmotic diuresis

- Hypothalamic lesions impairing thirst or osmoreceptor function
- Primary hypodipsia
- □ Water loss into cells
 - Severe exercise or seizures
- Sodium overload
 - Intake or administration of hypertonic sodium solutions

Approach for hypernatremic patients

- Why is the patient not drinking??
- Is there increased free water loss:
 - Polyuria
 - Uosm: if <250 D.I.
 - Uosm: if >300 solute diuresis
 - GI (osmotic diarrhea)
- Is the patient getting too much solute?

Therapeutic principles

- How can the water deficit be estimated?
 - Water deficit formula
- □ At what rate can the plasma sodium concentration safely be normalized?
 - The maximum safe rate at which the plasma sodium concentration should be lowered is by ≤0.5 meq/L per hour and no more than by 12 meq/L per day
 - Cerebral edema

Derivation of the water deficit formula

- Total body osmoles = TBW x 2 x plasma [Na+]
- Current body osmoles = Normal body osmoles
 - If current body water(CBW), normal body water(NBW)
- \Box CBW x plasma [Na+] = NBW x 140
- \square NEW = CEW x plasma [Na+] / 140
- Water deficit = NBW CBW
 - = (CEW x plasma [Na+] / 140) CBW
 - = CBW (<u>plasma [Na+]</u> 1)

140

Treatment

Calculate Amount of Water

- 0.4 x body weight x (PNa/140 1)
 0.4 x 50 x (150/140 1) = 1.4 liters
- Insensible losses + 1 liter/24h

Total volume=2.4 liters

- Rate (0.5meq/hour)
 - For Na to go from 150->140=20 hours
- Prescription: Rate of water repletion

= 2400/20=120ml/hr.

Hypokalemia

Definition

$\Box \quad \text{Serum K}^+ < 3.5 \text{ mEq/L}$

Distribution of Total Body K+

K⁺ Gradient Sets Cell Voltage

Intracellular Fluid 3500 mEq (140-150 mEq/L) Muscle 2700 mEq

Liver 250 mEq

Erythrocytes 250 mEq

Bone 300 mEq

Extracellular fluid 70 mEq (3.5-5.5 mEq/L)

Regulation of K⁺ Homeostasis

Factors that Influence the Internal Distribution of K⁺

Insulin* B₂-stimulation* Alkalosis Anabolism Mineral acidosis ↑ tonicity β blockade α stimulation

* Important in normal potassium homeostasis

Potassium transport along a simplified nephron

Physiological Reviews

Salt Transport in the Collecting Duct

α Intercalated Cell

Work up of hypokalemia

Hypokalemia: Treatment

Stuart L. Linus

Hyperkalemia

Clinical Approach to Hyperkalemia

- ICU hyperkalemia
 - Cell shifts
 - Acute renal failure
- Office hyperkalemia
 - Primary decrease in mineralocorticoid activity
 - Abnormal CCD

Clinical Features of Hypo- and Hyperkalemia

	Hypokalemia	Hyperkalemia
Neuromuscular	Weakness, +/- respiratory failure rhabdomyolysis,	Weakness
Cardiac	Arrhythmias	Cardiac standstill
Endocrine	↑ Glucose, Nephrogenic Dl	

Acute Treatment of Hyperkalemia

CaCl

- NaHCO₃, Glucose and Insulin, β₂ Agonists
 shifts K into cells
- Kayexalate, Dialysis
 removes K⁺ from body

Dosage and action

	Drugs	Dosage	Action
	Antagonism of membrane action	10% Calcium gluconate 10 cc Infuse over 2-3 min.	Minutes Repeat after 5 min.
Drive extracellular potassium into the cell	Drive extracellular	50% glucose 50 cc + insulin 10 U	15-60 min.
	the cell	7.5% NaHCO3 50 cc (45 mEq) infuse over 5 min.	30-60 min.
		Albuterol 0.5 mg Epinephrine 0.05 microgram/kg/min	30 min.
	Removal of potassium from the body	Cation exchange rasin; Kayexate 20 gm + 100 cc of 20% sorbitol oral or retention enema	4-6 hr.

Chronic Management of Hyperkalemia

- D/C other meds that interfere in K excretion
- Low K diet (70 mEq/d)
- Assess volume and blood pressure
 - ↓ volume, NI BP: consider fluorinef
 - ↑ volume, ↑ BP
 - Loop diurctics (use furosemide bid)
 - NaHCO₃ (650 mg tablet, 8 mEq)
- +/- Kayexalate

Metabolic acidosis

Critically ill patients

 Acute renal failure renal acidification defect
 Lactic acidosis

Lactic acidosis

Lactic acidosis

□ Type A : poor tissue perfusion

- Shock
- Hypoxia
- Severe anemia
- CO poisoning
- Severe asthma

□ Type B : no evidence of poor tissue perfusion

Associated with common disorder

- Liver failure
- Leukemia
- Thaiamine def.

Drug

metformin, phenformin, buformin, NRTI (Zidovudine, stavudine)

Enzyme defect

- Fructose1,6-diphosphatase def.
- Glucose6phosphatase def.

D-lactic acidosis
Is acidosis a problem?

- Relationship of extra cellular and intracellular pH
- Cardiovascular effects
 - -Decreased contractility
 - -Decrease response to CA
- Respiratory
 - -Increased minute ventilation

Management

Goal: raised ECF pH with parallel raising ICF pH

Removing the stimulus to acid production

Increasing ventilation

Bicarbonate therapy

Bicarbonate therapy

□ pH <7.1

decreased cardiac contractility continued tissue hypoperfusion

Bicarbonate therapy

Problem

- Fluid overload
- Postrecovery metabolic alkalosis
- Hypernatremia
- Raise CO2 generation in venous blood may exacerbate ICF acidosis
- Impaired hepatic lactate utilization and cardiac contractility

Bicarbonate therapy

Study in patients with shockinduced lactic acidosis have not demonstrated any improvement in CO or SBP

Cooper et al. Ann Intern Med 1990;112:492

Approach to Metabolic Acidosis

Thank you