

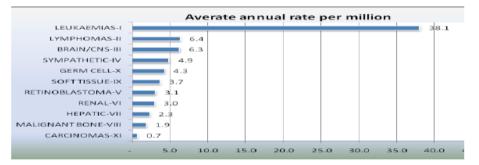
ความก้าวหน้าในการดูแลผู้ป่วย โรคมะเร็งเม็ดเลือดขาวในเด็ก

พญ.พชรพรรณ สุรพลชัย รองศาสตราจารย์ ภาควิชากุมารเวชศาสตร์ คณะแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์ มิถุนายน 2562

Outline

Part I

- Overview of childhood leukemia
- Management of childhood leukemia
- Outcome of childhood leukemia worldwide and in Thailand


Childhood leukemia (โรคมะเร็งเม็ดเลือดขาวในเด็ก)

- A cancer of the white blood cells, leads to abnormal proliferation of white blood cells in bone marrow
- The most common type of cancer in children and adolescents
- The exact cause of most childhood leukemias is UNKNOWN

Incidence of Childhood leukemia

- Approx. ¼ (25-30%) of childhood cancers worldwide
- US: 2,500-3,000 children (<20 years old) diagnosed with ALL and 500 with AML each year in the US
- Thailand (ThaiPOG) during 2003-2005: 1,421 cases
- ALL 1,029 cases (72%)
- AML 328 cases (23%)

Wiangnon S, et al. Asian Pac J Cancer Prev. 2011;12(9):2215-20. SEER Cancer Statistics Review, 1975-2015, National Cancer Institute. Bethesda, MD.

Risk factors for childhood leukemia

- Genetic risk factors: Down syndrome (trisomy 21)
- Inherited immune system disorders: Bloom syndrome, Schwachman-Diamond syndrome
- Siblings of children with leukemia, especially among identical twins
- Environmental risk factors: radiation, pregnancy and early childhood
 chemical exposure (benzene, pesticides)
- Immune suppression: previous organ transplant

Clinical presentation of childhood leukemia

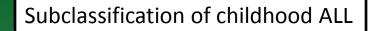
- Bone marrow failure
 - Red blood cell production: anemia
 - White blood cell production and function: infection
 - ✤ Platelets: bleeding
- Organomegaly: swollen LN, hepatomegaly, splenomegaly, gum hypertrophy
- Bone pain
- Loss of appetite and weight loss

Diagnosis of childhood leukemia

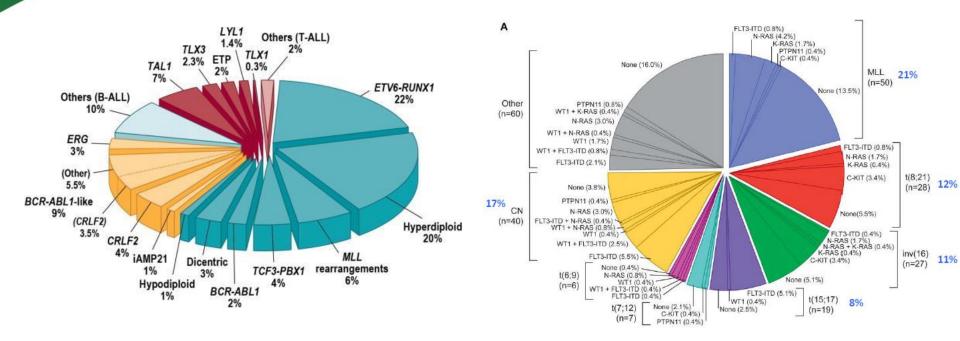
- Blood tests: CBC and smear
- Bone marrow studies
 - Morphology: marrow smear
 - Immunophenotypes: immunohistochemistry, flow cytometry
 - Chromosome and molecular genetic studies
- Lumbar puncture: CSF cell count and cytology
- Others: imaging, pleural tapping, LN or tissue biopsy

Types of childhood leukemia

- Acute leukemia (fast growing):
 - ALL: Acute lymphoblastic leukemia
 - AML/ANLL: Acute myeloid (non-lymphoblastic) leukemia
 - Rare: Acute undifferentiated leukemia, Mixed phenotype acute leukemia with t(v;11q23); KMT2A (MLL) rearranged
- Chronic leukemia (slower growing):


CML: Chronic myeloid leukemia

Juvenile myelomonocytic leukemia



คณะแพทยศาสตร์ มทาวิทยาลัยธรรมศาสตร์ Faculty of Medicine

CHILDHOOD LEUKEMIA

Molecular genetic in childhood AML

https://www.cancer.gov/images/cdr/live/CDR775146.jpg Creutzig U, et al. Blood. 2012;120(16):3187-205.

www.med.tu.ac.th

Management of childhood leukemia

Specific treatment of childhood leukemia

- Chemotherapy (chemo): "Risk-adapted therapy"
 - ✤Induction
 - Post-induction: consolidation/internsification, maintenance
 - CNS prophylaxis
- Radiotherapy

Management of childhood leukemia

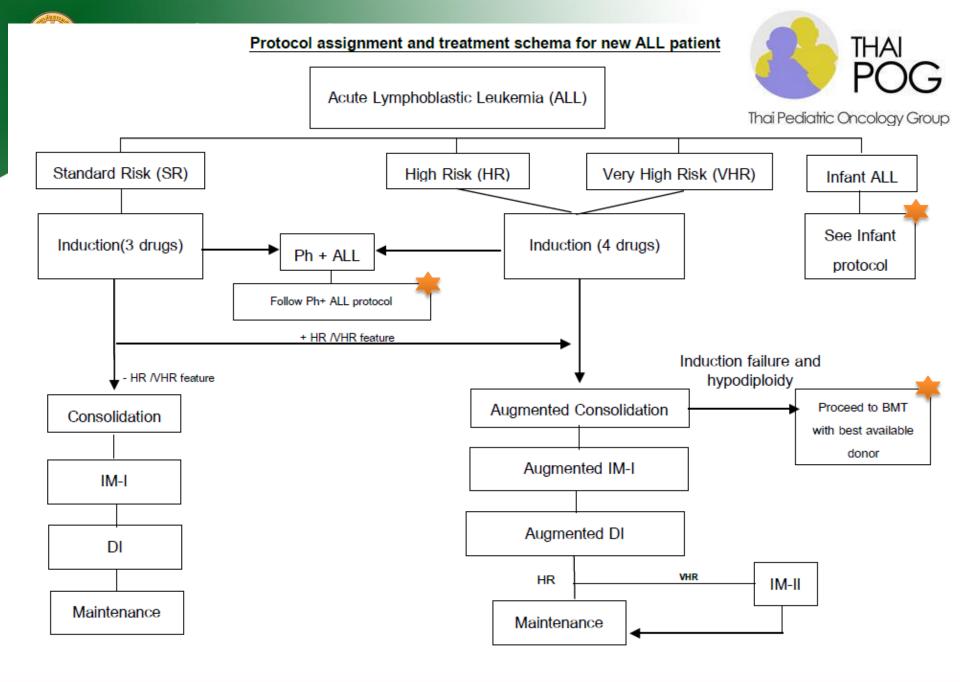
Specific treatment of childhood leukemia

Targeted therapy:

- Tyrosine kinase inhibitors (such as imatinib) in Philadelphia chromosome (Ph)-positive ALL
- Immunotherapy: specific natural killer (NK) cells
- Hematopoietic stem cell transplantation

Management guideline

Risk stratification for ALL



Thai Pediatric Oncology Group

Standard Risk (SR)	High Risk (HR)	Very High Risk (VHR)		
Clinical criteria	Clinical criteria	Clinical criteria		
■Pre-B ALL	■T-ALL	■ Pre-B ALL		
O Age 1-9 and	■Pre-B ALL	O Age ≥14		
O WBC <50,000	 Age 10-13 or 	■CNS-3		
Down Syndrome	O WBC ≥50,000	Induction failure (M2 or M3 at day 29)		
Molecular criteria (optional)	Testicular disease	Molecular criteria (optional)		
■Day 29 BM MRD <0.01%	Steroid pretreatment	■Day 29 BM MRD ≥0.01 with no favorable		
■No unfavorable molecular	Molecular criteria (optional)	cytogenetic		
feature	■Day 29 BM MRD ≥0.01%	Unfavorable molecular feature		
	with favorable cytogenetic:	O iAMP 21		
	ETV-6/RUNX-1 or double	 MLL rearrangement 		
	trisomy 4,10	O Hypodipliody (<44 chromosome or		
		DNA index <0.81)		
		O Ph-chromosome (follow Ph-ALL		
		protocol)		

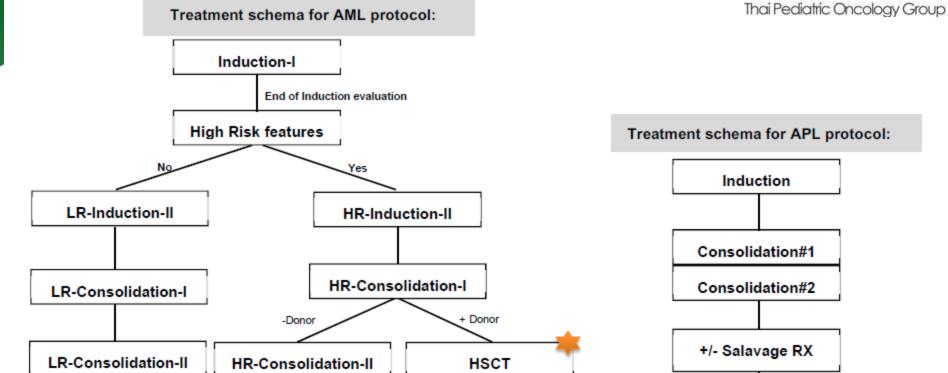
*Patient with Burkitt leukemia (stage IV mature B cell lymphoma with bone marrow involvement >25%) will be

treated with high risk mature B-cell lymphoma protocol (ThaiPOG-BL-13HR)

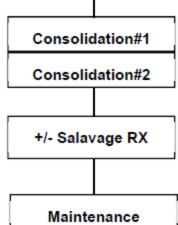
www.med.tu.ac.th

Thai Pediatric Oncology Group

Acute Myeloid Leukemia (AML)


Risk stratification for AML

Low Risk (LR)	High Risk (HR)
Presence of low risk molecular marker: Inv 16 or	FLT3/ITD positive with high allelic ratio >0.4
t(8,21) without high risk features	regardless of low risk features
MRD < 0.1% or M1 status at the end of induction-I	Presence of monosomy 5, monosomy 7, -5q or
AML patient who has no molecular marker and	MLL rearrangement regardless of low risk features
cytogenetic information available	• MRD \geq 0.1% or M2/M3 status at the end of
	induction-I regardless of low risk features



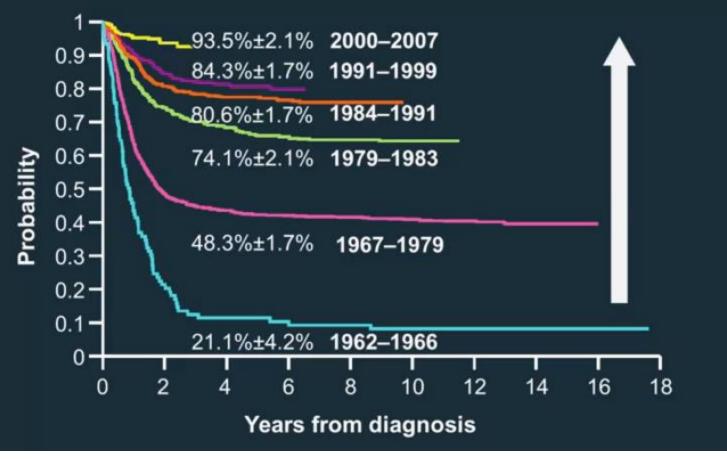
คณะแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์ **Faculty of Medicine**

	อายุ (เดือน)	Methotrexate	Hydrocortisone	Cytarabine (mg)
	2	(mg)	(mg)	
Triple	<12	6	12	18
IT	12-23	8	16	24
	24-35	10	20	30
	≥36	12	24	36

Management of childhood leukemia

Supportive treatment of childhood leukemia

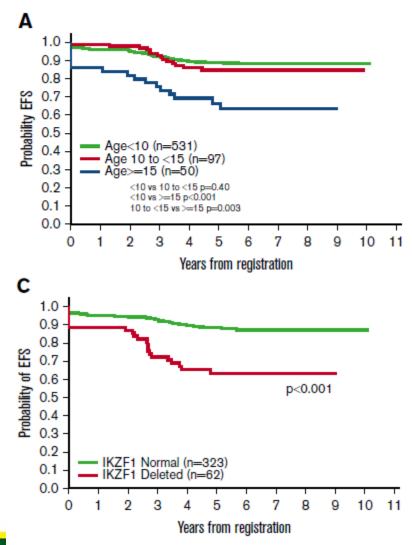
- Multidisciplinary supportive care team
- Parent/caregiver advocacy
- Funding support

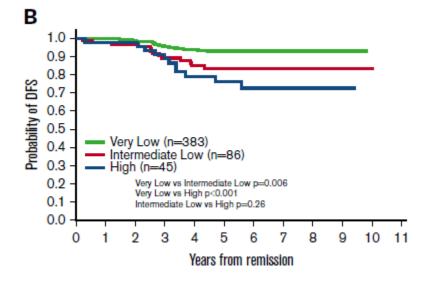

OUTCOME OF CHILDHOOD LEUKEMIA

CHILDHOOD LEUKEMIA

คณะแพทยศาสตร์ มทาวิทยาลัยธรรมศาสตร์ Faculty of Medicine

Overall 5-year survival of children with ALL by treatment era


Pui CH, Evans WE. N Engl J Med. 2006;354(2):166-78.



คณะแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์ Faculty of Medicine

CHILDHOOD LEUKEMIA

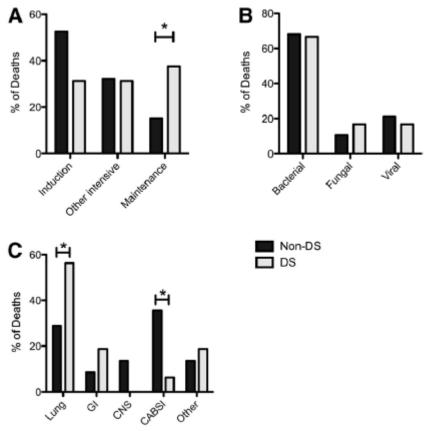
Outcome of childhood ALL treated with DFCI 05-001

- In 678 patients, 5-year EFS was 87% and OS 93%
- Age >15 years, WBC >50,000/mm³, IKZF1 deletion, and MRD >10⁻⁴ conferred inferior outcome

Vroonman S, et al. Blood. 2018;2(12):1448-58.

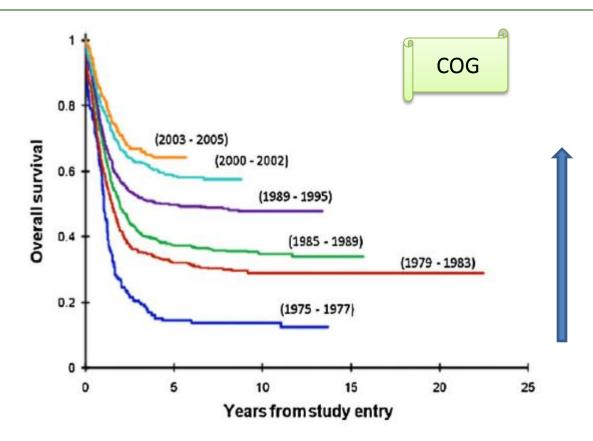
คณะแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร Faculty of Medicine

CHILDHOOD LEUKEMIA


Infection-related complications during ALL therapy

- 409 children with ALL treated with Total XV study 2000-2010
- Infection-related complications are associated with young age, white race, intensive chemotherapy
- These findings can devise future therapeutic interventions, such as close monitoring of patients, use of prophylactic antibiotics, modifications of chemotherapy dosing and regimen intensity

Infection-related mortality during ALL therapy



- 75 cases in UKALL2003 trial
- 5-year cumulative incidence of Infection-related mortality (IRM) 2.4%
 - For such a high-risk cohort (eg. DS, high intensity regimen), consideration should be given to the use of enhanced supportive care and increased antibiotic prophylaxis

O'Connor D, et al. Blood. 2014;124(7):1056-61.

Overall survival of childhood AML: incremental improvement over the last 40 years

Gamis AS, et al. Pediatr Blood Cancer. 2013;60(6):964-71.

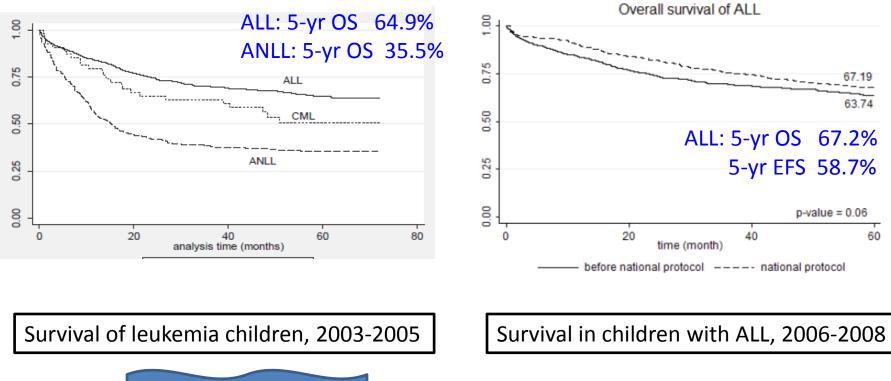
ANLIW	ายศาสตร์	ມຫາງົ	nsıa	aossi	IANAOS
Faculty	of Med	licine	}		

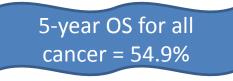
Outcomes of pediatric AML in recent collaborative studies

Study Group and Source	Study Acronym and Inclusion Time	No. of Patients	No. (%) of Patients Treated With SCT	Median ± SD EFS (%)	Median ± SD OS (%)	Relapse (%)	Source
AIEOP	AML2002/01 (2002-2011)	482	Allo-SCT: 141 (29) Auto-SCT: 102 (21)	8-year: 55 ± 3	8-year: 68 ± 2	24	Pession et al 2013 ¹¹
BFM-AML SG	AML-BFM 2004 (2004-2010)	521	42 (8)	5-year: 55 ± 2	5-year: 74 ± 2	29	Creutzig et al 2013 ⁶
COG	AAML03P1 (2003- 2005)	340	73 (21)	3-year: 53 ± 6	3-year: 66 ± 5	33 ± 6	Cooper et al 2012 ⁵
	AAML0531 (2006- 2010)	1,022 (ages 0-29 years)	NA	3-year: 53 <i>v</i> ≥ 47	3-year: 69 <i>v</i> 65	33 <i>v</i> 41	Gamis et al 2014 ⁹
Japan	AML99 (2000- 2002)	240	Allo-SCT: 41 (17) Auto-SCT: 5 (2)	5-year: 62 ± 7	5-year: 76 ± 5	32	Tsukimoto et al 2009 ¹⁵
JPLSG	AML-05 (2006- 2010)	443	54 (12)	3-year: 54 ± 2	3-year: 73 ± 2	30	Tomizawa et al, Leukemia 2013 ¹⁴ and Int J Hematol 2013 ¹³
MRC	MRC AML12 (1995-2002)	564	64 (11)	10-year: 54	10-year: 63	35	Gibson et al 2011 ¹⁰
EORTC-CLG	EORTC 58,921 (1993-2002)	177	Allo-SCT: 39 (27)	7-year: 49 ± 4	7-year: 62 ± 4		Entz-Werle et al 2005 ⁸
NOPHO	NOPHO AML 2004 (2004-2009)	151	22 (15)	3-year: 57 ± 5	3-year: 69 ± 5	30	Abrahamsson et al 2011 ⁴ , Hasle et al 2012 ¹⁶
PPLLSG	PPLLSG AML-98 (1998-2002)	104	Allo-SCT: 14 (13) Auto-SCT: 8 (8)	5-year: 47 ± 5	5-year: 50 ± 5	24	Dluzniewska et al 2005 ⁷
SJCRH	AML02 (2002- 2008)	216	59 (25)	3-year: 63 ± 4	3-year: 71 ± 4	21	Rubnitz et al 2010 ¹²
				ι	j		

Abbreviations: AIEOP, Italian Association for Pediatric Hematology and Oncology; Allo, allogeneic; AML, acute myeloid leukemia; Auto, autologous; BFM SG, Berlin-Frankfurt-Munster Study Group; CLG, Children's Leukemia Group; COG, Children's Oncology Group; EFS, event-free survival; EORTC, European Organisation for Research and Treatment of Cancer; Japan, Japanese Childhood AML cooperative study; JPLSG, The Japanese Pediatric Leukemia/Lymphoma Study Group; MRC, Medical Research Council; NA, not available; NOPHO, Nordic Society for Pediatric Hematology and Oncology; OS, overall survival; PPLLSG, Polish Pediatric Leukemia/Lymphoma Study Group; SD, standard deviation; SCT, stem-cell transplantation; SJCRH, St Jude Children's Research Hospital.

Zwaan CM, et al. J Clin Oncol. 2015;33(27):2949-62.

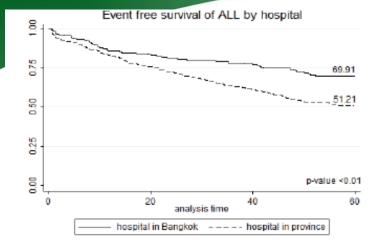

CHILDHOOD LEUKEMIA

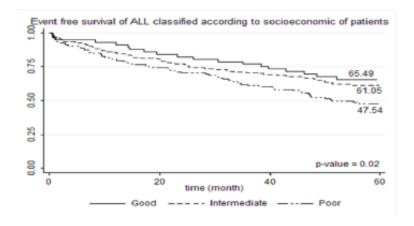

Childhood Cancer Incidence and Survival 2003-2005, Thailand: Study from the Thai Pediatric Oncology Group

Surapon Wiangnon¹*, Gavivann Veerakul², Issarang Nuchprayoon³, Panya Seksarn³, Suradej Hongeng⁴, Triroj Krutvecho⁵, Nintita Sripaiboonkij⁶

Outcome of Childhood Acute Lymphoblastic Leukemia Treated Using the Thai National Protocols

Panya Seksarn¹*, Surapon Wiangnon², Gavivann Veerakul³, Thirachit Chotsampancharoen⁴, Somjai Kanjanapongkul⁵, Su-On Chainansamit⁶


Wiangnon S, et al. Asian Pac J Cancer Prev. 2011;12(9):2215-20. Seksarn P, et al. Asian Pac J Cancer Prev. 2015;16(11):4609-14.


www.med.tu.ac.th

คณะแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์ Faculty of Medicine

CHILDHOOD LEUKEMIA

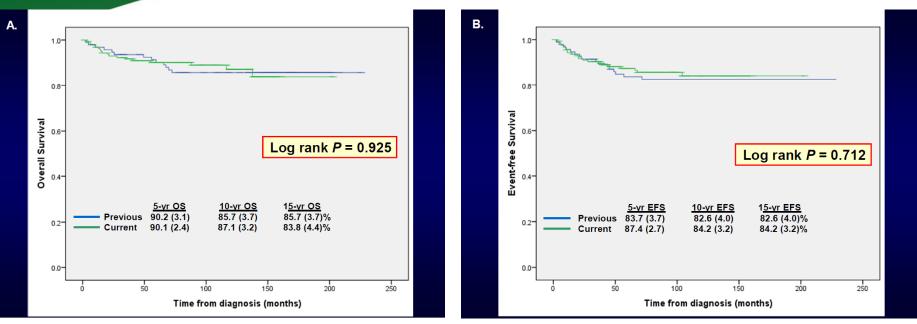
Survival in children with ALL, 2006-2008

Outcome of Childhood Acute Lymphoblastic Leukemia Treated Using the Thai National Protocols

Panya Seksarn¹*, Surapon Wiangnon², Gavivann Veerakul³, Thirachit Chotsampancharoen⁴, Somjai Kanjanapongkul⁵, Su-On Chainansamit⁶

- 486 cases from 12 hospitals (2006-2008)
- There were discrepancies in EFS between centers in Bangkok and up-country provinces (69.9 vs 51.2%)
- Socioeconomics and patient compliance were key elements in determining the outcome (65.5 vs 47.5%)

Wiangnon S, et al. Asian Pac J Cancer Prev. 2011;12(9):2215-20. Seksarn P, et al. Asian Pac J Cancer Prev. 2015;16(11):4609-14.


Original Study

Long-Term Outcomes of Modified St Jude Children's Research Hospital Total Therapy XIIIB and XV Protocols for Thai Children With Acute Lymphoblastic Leukemia

Pacharapan Surapolchai,¹ Usanarat Anurathapan,² Arpatsorn Sermcheep,² Samart Pakakasama,² Nongnuch Sirachainan,² Duantida Songdej,² Pongpak Pongpitcha,² Suradej Hongeng²

 Long-term outcomes and prognostic features of 250 Thai children with ALL treated with modified St Jude Children's Research Hospital (SJCRH) protocols (Total Therapy XIIIB and XV) during 1997-2014

LYMPHOMA, MYELOMA LEUKEMIA

- Patients with WBC >100,000/mm³ and classified as high-risk conferred inferior EFS in modified Total XIIIB; MRD positivity was a prognostic factor of inferior OS only for modified Total XIIIB patients
- Favorable outcomes of childhood ALL occurred using adapted SJCRH protocols, up to 80% perhaps because of multidisciplinary team and parent advocacy

Surapolchai P, et al. Clin Lymphoma Myeloma Leuk. 2019. (in press).

ดกเวเพทศสาสกร์ แทววิทศาลัสธรรมศาสกร **Faculty of Medicine**

		nom mar i cuiutic one	0108
Late effects	Number (%)		
Endocrine/metabolic	64 (24.8)	Endocrine and metabolic complication	Number $(n = 64)$
Psychosocial	28 (10.9)		
Cardiovascular	9 (3.5)	Obesity (BW >120% of weight for height)	28 (43.8
Dental	5 (1.9)	Overweight (BW 110-120% of weight for height)	15 (23.4
Nervous system	4 (1.5)	Short stature (height <3rd percentile)	13 (20.3
2		Underweight (BW <3rd percentile)	7 (10.9
Dermatologic	2 (0.8)	Delayed puberty	6 (9.4)
mmune	2 (0.8)	Hyperthyroidism	2 (3.1)
ain	2 (0.8)	Hypothyroidism	1 (1.6)
uditory	2 (0.8)	Dyslipidemia	2 (3.1)
astrointestinal/hepatic	1 (0.4)	Type 2 diabetes mellitus	2 (3.1)
cular	1 (0.4)	Type 1 diabetes mellitus	1 (1.6)
lusculoskeletal	1 (0.4)	Insulin resistance	1 (1.6)
ulmonary	0	Adrenal insufficiency	1 (1.6)
Jrinary	0	Growth hormone deficiency	1 (1.6)

Late effects in survivors of childhood acute lymphoblastic leukemia: a study from Thai Pediatric Oncology Group

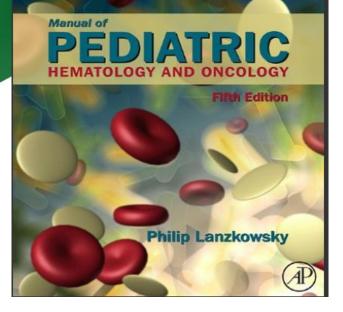
Number (%) (n = 64)

- 258 survivors, follow up 7.2 years with 47.3% had ≥1 late effect
- Overweight/obesity was the most common late effect, which CNS radiation was a significant risk factor (OR 1.97, 95% CI 1.02–3.81)

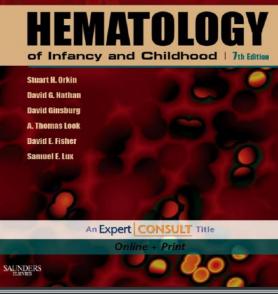
Pakakasama S, et al. Int J Hematol. 2010;91(5):850-4.

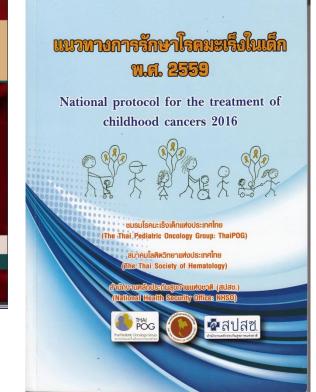
Impaired Glucose Tolerance and Insulin Resistance in Survivors of Childhood Acute Lymphoblastic Leukemia: Prevalence and Risk Factors

Pacharapan Surapolchai, MD,*† Suradej Hongeng, MD,* Pat Mahachoklertwattana, MD,* Samart Pakakasama, MD,* Angkana Winaichatsak, MD,‡ Nittaya Wisanuyothin, MD,‡ Ekawat Pasomsub, PhD,§ Surakameth Mahasirimongkol, MD, and Nongnuch Sirachainan, MD*


- Ten out of 131 ALL survivors (7.6%) had impaired glucose tolerance (IGT) whereas 40 out of 131 (30.5%) had insulin resistance (IR) and showed characteristics of the metabolic syndrome
- The PAX4 variant (rs2233580) might impact individual susceptibility against IGT and diabetes, when adjusted for age

Clinical practice points


- Strategies for advance improvement in survival outcome in childhood leukemia:
- 1. Effective treatment administration
- 2. Precise diagnosis and risk stratification
- 3. Improved supportive care
- Follow-up for leukemia survivors with "standardized survivorship care plan" is crucial for individual formulation, based on disease, age and history of treatment



คณะแพทยศาสตร์ มหาวิทยาลัยธรรมศาสตร์

NATHAN AND OSKI'S

CHILDHOOD LEUKEMIA

แนวทางการรักษาโรคมะเร็งในเด็ก

พ.ศ. 2561

National protocol for the treatment of childhood cancers 2018

Acknowledgements

- Health care practitioners, childhood leukemia patients and legal guardians
- ชมรมโรคมะเร็งในเด็กแห่งประเทศไทย (The Thai Pediatric Oncology Group; ThaiPOG)
- สมาคมโลหิตแห่งประเทศไทย (Thai Society of Hematology)
- สำนักงานหลักประกันสุขภาพแห่งชาติ (สปสช.) (National Health Security Office; NHSO)
- กองทุนโรคมะเร็งในเด็ก ในพระอุปถัมภ์ พระเจ้าวรวงศ์เธอ พระองค์เจ้า โสมสวลี พระวรราชาทินัดดามาต (The Children Cancer Fund under the Patronage of HRH Princess Somsawali)

