REVIEW

Characteristics and methods of incorporating randomized and nonrandomized evidence in network meta-analyses: a scoping review

Kathryn Zhanga,b,* , Paul Arorab , Neha Satic , Audrey Béliveaud , Natalie Trokea , Areti Angeliki Veronikie,f,g , Myanca Rodriguese , Patricia Riose , Wasifa Zarinee , Andrea C. Triccoa,b,e

aDepartment of Public Health, Dalla Lana School of Public Health, University of Toronto, 6th floor, 155 College Street, Toronto, Ontario M5T 3M7, Canada
bEpidemiology Division, Dalla Lana School of Public Health, University of Toronto, 6th floor, 155 College Street, Toronto, Ontario M5T 3M7, Canada
cDepartment of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
dDepartment of Statistics and Actuarial Sciences, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
eLi Ka Shing Knowledge Institute, St. Michael’s Hospital, 209 Victoria Street, East Building, Toronto, Ontario M5B 1W8, Canada
fDepartment of Primary Education, School of Education, University of Ioannina, Ioannina, Greece
gDepartment of Surgery & Cancer, Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College, London W12 0NN, UK

Accepted 4 April 2019; Published online 3 May 2019

Abstract

\textbf{Objectives:} The objective of the study was to conduct a scoping review of the published literature on methods used to combine randomized and nonrandomized evidence (NRE) in network meta-analyses (NMAs) and their respective characteristics.

\textbf{Study Design and Setting:} We conducted a scoping review using a list of NMAs which incorporated NRE that were identified from a previous review. All NMAs that included NRE in the analysis of main outcomes or sensitivity analyses were eligible for inclusion. Two reviewers independently screened studies for inclusion and performed data abstraction. Data analysis involved quantitative (frequencies and percentages) and qualitative (narrative synthesis) methods.

\textbf{Results:} A total of 23 NMAs met the predefined inclusion criteria, of which 74\% (\textit{n} = 17) used naïve pooling, 0\% used NRE as informative priors, 9\% (\textit{n} = 2) used the 3-level Bayesian hierarchical model, 9\% (\textit{n} = 2) used all methods, and 9\% (\textit{n} = 2) used other methods. Most NMAs were supplemented with additional analyses to investigate the effect estimates when only randomized evidence was included.

\textbf{Conclusion:} Although most studies provided justification for the inclusion of NRE, transparent reporting of the method used to combine randomized evidence and NRE was unclear in most published networks. Most NMAs used naïve pooling for combining randomized evidence and NRE.

Keywords: Network meta-analysis; Mixed treatment comparison; Indirect treatment comparison; Evidence synthesis; Non-randomized; Statistical methods

1. Background

1.1. Introduction to NMA

The comparative effectiveness of two treatments is often evaluated through pairwise meta-analysis by synthesizing an overall treatment effect estimate from direct head-to-head randomized controlled trials (RCTs) \cite{1}. Network meta-analysis (NMA) extends this approach by evaluating many pairwise comparisons across a variety of interventions \cite{2,3}. This method has become increasingly popular in health care because it is able to produce indirect estimates, for which no head-to-head evidence exists and can be used to rank the safety and effectiveness of alternative interventions. This is important because multiple treatments and interventions are becoming more commonly available for most clinical conditions.

NMAs are traditionally restricted to evidence from RCTs, as they are considered the highest quality of evidence for studying interventions and are the standard statistical basis for NMAs \cite{4}. More recently, there has been a growing interest in including nonrandomized evidence...
What is new?

Key findings
• Earlier network meta-analyses (NMAs) have been conducted with an evidence base comprised entirely of randomized controlled trials (RCTs). Nonrandomized evidence (NRE) is obtained from observational studies or patient registries. Recently, the use of NRE is becoming widely recognized as a potential source of evidence in NMAs. This scoping review identifies the statistical methodologies used to combine randomized evidence and NRE, and the most common method of incorporating NRE was naïve pooling. Most studies provided justification for the inclusion of NRE in NMAs; however, most studies failed to transparently report the methods used to combine RCTs and NRE.

What this adds to what was known?
• This epidemiological review empirically evaluates the practice of incorporating NRE into the published NMA literature. Our evidence base comprises a list of studies from a previously completed search of NMAs that incorporated NRE. This review provides an overview of the characteristics and methodologies specific to NMAs that include NRE. We conclude that the use of NRE will continue to grow in the future and careful consideration is required when incorporating NRE to produce more comprehensive and generalizable treatment effect estimates.

What is the implication and what should change now?
• This empiric data set of methodologies and characteristics of NMAs that include NRE could help further the discussion on the appropriateness of including NRE in NMAs using different methods and broaden the understanding of how often different methods are used and in what contexts.
• The incorporation of NRE in NMAs should require careful thought and consideration. Heterogeneity, consistency, and transitivity are key assumptions that should also be accounted for when including NRE. Authors should also explore and compare different methods of including NRE. Owing to growing interest of using NRE, future tutorials and training should include guidance on statistical methods to including NRE in NMAs.

(NRE) into NMAs [5]. This has largely been driven by increasing demand for the incorporation of “real-world evidence,” generated from observational studies or patient registries, to inform medical evidence and decisions [5,6]. The inclusion of NRE can address shortcomings of RCT evidence including lower generalizability, shorter follow-up, smaller sample sizes, restrictive study populations, and impractical or unethical conduct [7].

1.2. Methods for incorporating NRE

NRE is subject to various biases such as confounding [8], and the inclusion of NRE into a network may produce biased estimates if these biases are not accounted for. The validity of including both RCTs and NRE into a network rests on the assumption of consistency and transitivity across studies. Therefore, it is important to investigate these aspects when including NRE. Definitions for these aspects are presented in Appendix A.

This scoping review will focus on the three main approaches to incorporating NRE into NMAs as described in a commentary article by Cameron et al. [7] and a methodology article by Schmitz et al. [6]. Naïve pooling is the simplest method for combining both randomized evidence and NRE [6,7]. This approach incorporates evidence from all included studies ignoring differences in study designs. A second approach involves using a Bayesian framework in which NRE is incorporated into an NMA as prior information. This process involves analyzing data from NRE separately and configuring the model such that data from these studies are less influential than data from RCTs [6,7,9]. Third, a three-level Bayesian hierarchical model can be used to explicitly examine differences in study designs by modeling the two sources of evidence (RCT and NRE) separately and creating estimates at the level of specific study designs. These estimates are then combined to synthesize an overall measure of treatment effect [6,7,9].

Although other groups have reviewed statistical methods on the incorporation of NRE in NMAs [7,9], to our knowledge, no group has empirically evaluated this practice in the published NMA literature. Our objective is to provide an overview of characteristics specific to NMA’s that include NRE, to describe different methodologies for incorporating NRE, how often and in what context a method is used, and to present future directions for combining both RCTs and NRE.

2. Methods

2.1. Study protocol

The methods for this scoping review were developed by Petropoulou et al. [10] and Zarin et al. [11], and the methodological framework of this review was proposed by Arksey et al. [12].

Our data set of NMAs was derived from a previously completed search of NMAs published between January 1999 and April 2015 [10]. Our evidence base comprised a total of 116 studies that were excluded from the study by Petropoulou et al. [10]. We assessed these 116 studies to determine eligibility.
in our review. From these studies, a subset of 83 NMAs incor-
porated NRE in them, either as a primary or secondary analysis.
An additional 33 studies were excluded for reasons other than
the incorporation of NRE. Our database was supplemented by
searching the 456 NMAs included by Petropoulou et al. [10]
for sensitivity or subgroup analyses that include both RCTs
and NRE. The references of the final set of included studies
were also searched.

2.2. Inclusion criteria

The inclusion criteria were based on the studies by Pet-
ropoulou et al. [10] and Zarin et al. [11], with the alteration
of including NMAs that combined both randomized evi-
dence and NRE. We included NMAs that compared at least
four interventions that were defined as medical, safety, or
social interventions from any study design. We considered
quasi-RCT, controlled before and after, cohort, case-
control, and cross-sectional studies as NRE. We excluded
networks that included animal studies, examined diagnostic
test accuracies, and where the number of studies was small-
er than the number of interventions or treatments. NMAs
that included only NRE were also excluded. Owing to
limited information and resources, conference abstracts
for which a full-text article was unavailable or studies pub-
lished in a language other than English were excluded.

2.3. Screening

Using the inclusion criteria, a pilot test was performed
by two independent reviewers (K.Z. and N.T.) on a random
sample of 10 studies. Subsequently, the titles and abstracts
from the excluded 116 NMAs were screened independently
by both reviewers, and screening results were compared.
The full-text articles of potentially relevant abstract cita-
tions were then screened in the same manner. Discrepancies
were discussed between reviewers and if necessary resolved
by a third reviewer. Authors of conference abstracts were
contacted to access the full-text article. If available, proto-
col proposals were replaced with full-text publications, and
the full-text publications were used for inclusion, even if
they were published past the date of the literature search
(April 2015). If the protocol did not result in a full-text pub-
lication, the protocol study was included. The previous
database [10] excluded protocol studies; we included these
studies to increase comprehensiveness.

2.4. Data abstraction and data items

The data abstraction form was created in Microsoft Excel
and developed as an extension to the previous review [10].
Data abstraction was performed in duplicate. Each reviewer
extracted data for all included studies. A pilot test was per-
formed on a random sample of three studies. Abstraction
forms were compared and discrepancies were resolved by a
third reviewer (P.A.). An extraction form template is pro-
vided in Appendix G. Data were extracted for the primary
outcome. If the primary outcome did not incorporate NRE,
the network for the secondary outcome was used. In cases
where both the primary outcome and secondary outcomes
did not use NRE, the sensitivity or subgroup analyses for
the NMA was used. Other methods used in data abstraction
have been discussed elsewhere [10,11].

We abstracted data items specific to NRE, such as whether
the studies provided justification for the inclusion of NRE, to-
tal number of nonrandomized studies in the network, method
used for incorporating NRE (such as naïve pooling, informa-
tive priors, Bayesian 3-level hierarchical model, all methods),
whether the study clearly reported the method used and if a scale or tool was used for bias assessment.
We contacted the corresponding authors through email to verify
the method of incorporating randomized evidence and NRE
in the NMAs. A second author (A.A.V.) confirmed the statis-
tical methodology when authors did not respond. Data on re-
porting characteristics (inconsistency, heterogeneity, and
transitivity) grouped by method of NRE incorporation were
also abstracted to increase reporting specificity.

2.5. Statistical analyses

Data analysis included both quantitative and qualitative
components. We summarized the findings of network charac-
teristics and the methods used from the eligible studies using
frequencies and percentages. We reported the qualitative re-
results through narrative synthesis. Graphs were created in the
R 3.5.0. software using the ggplot2 package and descriptive
statistics were generated in Microsoft Excel.

3. Results

3.1. Screening results

The study selection process is presented in Figure 1. Af-
fter screening titles and abstracts of the 116 studies [10], 70
relevant abstracts were identified and the full-text publica-
tions were retrieved to assess eligibility. From these 70 ab-
stracts, 14 were conference abstracts of which only 1 had
an accessible full-text publication. A total of 17 full-text
publications met the inclusion criteria [5,6,13–28]. Of
these 17 articles, 3 protocol proposals were replaced with
the published studies if they were available; one protocol
study resulted in two publications [27,28], and the final
article for one protocol proposal [20] had not been pub-
lished yet. Five networks [29–33] were identified from
screening the 456 NMAs from the study by Petropoulou
et al. [10], and one network [6] was identified from scan-
ning the references of the included studies. Overall, 23 pub-
lished NMAs [5,6,13–33] met the inclusion criteria.

3.2. Study characteristics and NMA characteristics

Information related to geographic region, knowledge
synthesis approach, and funding is presented in Table 1.
Abstracted data related to closed loops (“full” networks) or absence of a closed loop (“star” network) and outcome types are reported in Appendix C.

3.3. NMA model validity and reporting

The assessment of inconsistency was possible for 21 NMAs that contained at least one closed loop. Of these 21 NMAs that included NRE, just over half (n = 13, 57%) evaluated consistency within the network through node-splitting, random-effects metaregression, loop-specific, and/or design-by-treatment interaction models. The assessment of transitivity was reported by eight (35%) NMAs.

Nineteen (83%) included networks investigated between-study heterogeneity by performing subgroup or sensitivity analyses for the purposes of excluding the NRE to compare effect estimates with the NMA that included RCTs alone, as well as RCTs in addition to NRE. The random-effects model was the most popular method used for conducting NMAs. Thirteen (57%) networks used a random-effects model, zero networks used a fixed-effects model, and six (26%) used both models. The most commonly used software to combine NRE and RCT data was WinBUGS/OpenBUGS (n = 13, 57%), followed by STATA (n = 5, 22%). Appendix D presents a summary of reporting characteristics.

3.4. Methods for incorporating NRE

Authors of 17 of the 23 articles provided supplementary information on the specific method of combining randomized evidence with NRE in their NMA. Used by seventeen studies (74%), naïve pooling was the most common method for incorporating both randomized evidence and NRE in an NMA. Nine percent (n = 2) used the Bayesian 3-level hierarchical model, none incorporated NRE using informative priors, two (9%) used all three methods, and two (9%) used “other” approaches. Most studies provided justification on why NRE was included in the network (n = 19, 83%). However, only four (17%) of these studies explicitly reported the method used for including both types of evidence, and three (13%) NMAs provided justification for why a method was used. The most common rationale...
provided for including NRE in NMAs was to increase generalizability. Other reasons included the limited amount of direct evidence from RCTs, evaluation of rare outcomes, to allow for a wider range of evidence, and to evaluate the robustness of the results. Sixteen (70%) studies used a scale or tool to assess for bias in observational studies, six (26%) studies did not use any tools, and one (4%) study was unclear.

Figure 2, Table 2, and Appendix E present the methods, characteristics, and justifications of incorporating NRE. The relationship between year of publication and method used is presented Figure 3, and the proportion of non-randomized studies to all studies stratified by year of publication is presented in Appendix F. In addition, reporting of consistency, transitivity, and analyses for heterogeneity stratified by method of NRE incorporation is presented in Table 3.

4. Discussion

We conducted a scoping review using an existing empirical data set [10,11] of published NMAs to describe characteristics and methodologies of networks that combined both randomized evidence and NRE.

Four percent (23/572) of studies included NRE in an NMA, suggesting that this is not a widely used practice. The earliest NMA that met our inclusion criteria was published in 2007 [30]. Seven NMAs (9%) were published in 2015, which suggests that the incorporation of NRE into NMAs is becoming more prevalent in the published literature. The three-level Bayesian hierarchical model was introduced in 2000 to combine different study designs [34]. However, in our database, this model was not used until 2013 to combine randomized evidence and NRE.

Most included NMAs were conducted by combining randomized evidence and NRE through naïve pooling. This method makes strong assumptions by treating all study designs the same. This model does not downweight study designs appraised as “low quality” or make bias adjustments introduced by NRE [6]. Despite its drawbacks, the naïve pooling method is attractive in practice because of its ease of implementation as a simpler and standard model [7] and can be supplemented with subgroup or sensitivity analyses to assess robustness. Naïve pooling can be advantageous by improving network connectivity and to assess consistency.

Literature search was conducted between January 1999 and April 2015. Protocol proposals replaced with published studies (published after April 2015). Refer to Methods.

b Studies that used naïve pooling but supplemented with additional analyses to investigate the effect of study design.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year of publication</th>
<th>Geographic region</th>
<th>Knowledge synthesis approach</th>
<th>Funding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akbar et al. [24]</td>
<td>2013</td>
<td>North America</td>
<td>Systematic review</td>
<td>Not reported</td>
</tr>
<tr>
<td>Chen et al. [31]</td>
<td>2012</td>
<td>Europe</td>
<td>Systematic review</td>
<td>Publicly sponsored</td>
</tr>
<tr>
<td>Cooper et al. [32]</td>
<td>2012</td>
<td>Europe</td>
<td>Not reported</td>
<td>Publicly sponsored</td>
</tr>
<tr>
<td>Cota et al. [23]</td>
<td>2013</td>
<td>Central and South America</td>
<td>Systematic review</td>
<td>Publicly sponsored</td>
</tr>
<tr>
<td>Hubbard et al. [22]</td>
<td>2015</td>
<td>Europe</td>
<td>Not reported</td>
<td>Publicly sponsored</td>
</tr>
<tr>
<td>Hutton et al. [21]</td>
<td>2012</td>
<td>North America</td>
<td>Systematic review</td>
<td>Nonsponsored</td>
</tr>
<tr>
<td>Hutton et al. [20]</td>
<td>2014</td>
<td>North America</td>
<td>Systematic review</td>
<td>Publicly sponsored</td>
</tr>
<tr>
<td>Lewis et al. [18]</td>
<td>2011</td>
<td>Europe</td>
<td>Systematic review</td>
<td>Publicly sponsored</td>
</tr>
<tr>
<td>Lewis et al. [33]</td>
<td>2015</td>
<td>Europe</td>
<td>Systematic review</td>
<td>Publicly sponsored</td>
</tr>
<tr>
<td>Jenkins et al. [5]</td>
<td>2014</td>
<td>Europe</td>
<td>Systematic review</td>
<td>Industry and publicly sponsored</td>
</tr>
<tr>
<td>Kruidenier et al. [19]</td>
<td>2012</td>
<td>Europe</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Pollock et al. [30]</td>
<td>2007</td>
<td>Europe</td>
<td>Systematic review</td>
<td>Publicly sponsored</td>
</tr>
<tr>
<td>Schmitz et al. [6]</td>
<td>2013</td>
<td>Europe</td>
<td>Systematic review</td>
<td>Not reported</td>
</tr>
<tr>
<td>Schwendicke et al. [16]</td>
<td>2015</td>
<td>Europe</td>
<td>Systematic review</td>
<td>Publicly sponsored</td>
</tr>
<tr>
<td>Schwendicke et al. [17]</td>
<td>2015</td>
<td>Europe</td>
<td>Systematic review</td>
<td>Publicly sponsored</td>
</tr>
<tr>
<td>Thom et al. [15]</td>
<td>2015</td>
<td>Europe</td>
<td>Systematic review</td>
<td>Industry sponsored</td>
</tr>
<tr>
<td>Tricco et al. [27]</td>
<td>2015</td>
<td>North America</td>
<td>Systematic review</td>
<td>Publicly sponsored</td>
</tr>
<tr>
<td>Tricco et al. [28]</td>
<td>2016</td>
<td>North America</td>
<td>Systematic review</td>
<td>Publicly sponsored</td>
</tr>
<tr>
<td>Tricco et al. [26]</td>
<td>2018</td>
<td>North America</td>
<td>Systematic review</td>
<td>Publicly sponsored</td>
</tr>
<tr>
<td>Veroniki et al. [25]</td>
<td>2017</td>
<td>North America</td>
<td>Systematic review</td>
<td>Publicly sponsored</td>
</tr>
<tr>
<td>Wang et al. [14]</td>
<td>2012</td>
<td>North America</td>
<td>Not reported</td>
<td>Publicly sponsored</td>
</tr>
<tr>
<td>Wilhelms et al. [29]</td>
<td>2015</td>
<td>North America</td>
<td>Systematic review</td>
<td>Publicly sponsored</td>
</tr>
</tbody>
</table>
In the study by Thom et al. [15], a closed loop within the network is present because of the inclusion of evidence from observational studies. The network would be disconnected in the absence of NRE, that is, if it had been restricted to solely RCTs.

NRE was not included in NMAs as prior information, with the exception of studies \((n = 2, 9\%) \) that used all methods to combine randomized evidence and NRE [5,6]. This method is advantageous over naive pooling, as it allows for the adjustment of potential biases because of the study design by downweighting observational study data [6,9]. However, between-study heterogeneity including all potential study designs is not accounted for. A 3-level Bayesian hierarchical model was used in two (9\%) NMAs. This method is able to include different forms of evidence by accounting for between-study heterogeneity, both within each study design and across varied study designs [5,6,35]. The 3-level Bayesian hierarchical model has been previously applied in clinical settings; more weight was assigned to the randomized evidence compared with other studies, based on the premise that RCTs might be less biased than estimates from observational studies [35–37]. These NMAs were also adjusted for bias introduced by NRE. In the study by Veroniki et al. [25], this method was used to combine both randomized evidence and NRE. However, the number of nonrandomized studies included in the network was 77, whereas the number of RCTs included was one. Each type of study represents a level of “clustering” in the model and because this NMA included only one RCT in the cluster, this method would produce very similar results as naive pooling. Therefore, this approach is useful in cases where the number of studies per study type is more balanced. A common problem for all three approaches is the ability to maintain the internal and external validities of RCT data and also the ability to adjust for

Table 2. Characteristics of NMAs that included NRE

<table>
<thead>
<tr>
<th>Characteristics of NMAs ((n = 23))</th>
<th>Count (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of incorporating NRE</td>
<td></td>
</tr>
<tr>
<td>Naïve pooling</td>
<td>17 (74%)</td>
</tr>
<tr>
<td>Informative priors</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>3-Level hierarchical model</td>
<td>2 (9%)</td>
</tr>
<tr>
<td>All methods</td>
<td>2 (9%)</td>
</tr>
<tr>
<td>Other*</td>
<td>2 (9%)</td>
</tr>
<tr>
<td>Explicit reporting of method for incorporating NRE</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>19 (83%)</td>
</tr>
<tr>
<td>Reporting of justification for the chosen method of incorporating NRE</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>20 (87%)</td>
</tr>
<tr>
<td>Description of the chosen method used to incorporate NRE</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>20 (86%)</td>
</tr>
<tr>
<td>Reporting of justification for including NRE into the NMA</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>4 (17%)</td>
</tr>
<tr>
<td>Using a risk of bias scale/tool to assess bias</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>6 (26%)</td>
</tr>
<tr>
<td>Unclear</td>
<td>1 (4%)</td>
</tr>
</tbody>
</table>

Abbreviations: NMA, network meta-analyses; NRE, nonrandomized evidence; IPD, individual patient data.

* Other methods include metaregression analysis including IPD (available IPD for 10/12 studies) as presented in the study by Hubbard et al. [22] and propensity score matching based on baseline characteristics as presented in the study by Thom et al. [15].
Fig. 3. Method of NRE incorporation stratified by year of publication. Studies published after April 2015 are protocol proposals replaced with published studies. Refer to Methods. One study published in 2015 was a protocol proposal replaced with the published study. NRE, nonrandomized evidence.

Table 3. Reporting of the method used to incorporate NRE grouped by reporting of consistency, transitivity, analysis of heterogeneity, and use of IPD

<table>
<thead>
<tr>
<th>Naive pooling</th>
<th>Reporting characteristic</th>
<th>Yes (N)</th>
<th>(%)</th>
<th>No (N)</th>
<th>(%)</th>
<th>Unclear (N)</th>
<th>(%)</th>
<th>Total (N)</th>
<th>Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Consistency</td>
<td>8</td>
<td>53%</td>
<td>5</td>
<td>33%</td>
<td>2</td>
<td>13%</td>
<td>15</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Transitivity</td>
<td>6</td>
<td>35%</td>
<td>11</td>
<td>65%</td>
<td>0</td>
<td>0%</td>
<td>17</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Heterogeneity</td>
<td>14</td>
<td>82%</td>
<td>3</td>
<td>18%</td>
<td>0</td>
<td>0%</td>
<td>17</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Use of IPD</td>
<td>0</td>
<td>0%</td>
<td>17</td>
<td>100%</td>
<td>0</td>
<td>0%</td>
<td>17</td>
<td>100%</td>
</tr>
<tr>
<td>Information priors</td>
<td>Consistency</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Transitivity</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Heterogeneity</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>Use of IPD</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>3-Level Bayesian</td>
<td>Consistency</td>
<td>2</td>
<td>100%</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Transitivity</td>
<td>1</td>
<td>50%</td>
<td>1</td>
<td>50%</td>
<td>0</td>
<td>0%</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Heterogeneity</td>
<td>2</td>
<td>100%</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Use of IPD</td>
<td>0</td>
<td>0%</td>
<td>2</td>
<td>100%</td>
<td>0</td>
<td>0%</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td>All methods</td>
<td>Consistency</td>
<td>2</td>
<td>100%</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Transitivity</td>
<td>0</td>
<td>0%</td>
<td>2</td>
<td>100%</td>
<td>0</td>
<td>0%</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Heterogeneity</td>
<td>1</td>
<td>50%</td>
<td>1</td>
<td>50%</td>
<td>0</td>
<td>0%</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Use of IPD</td>
<td>0</td>
<td>0%</td>
<td>2</td>
<td>100%</td>
<td>0</td>
<td>0%</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td>Othera</td>
<td>Consistency</td>
<td>1</td>
<td>50%</td>
<td>1</td>
<td>50%</td>
<td>0</td>
<td>0%</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Transitivity</td>
<td>1</td>
<td>50%</td>
<td>1</td>
<td>50%</td>
<td>0</td>
<td>0%</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Heterogeneity</td>
<td>2</td>
<td>100%</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>2</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>Use of IPD</td>
<td>2</td>
<td>100%</td>
<td>0</td>
<td>0%</td>
<td>0</td>
<td>0%</td>
<td>2</td>
<td>100%</td>
</tr>
</tbody>
</table>

Abbreviations: IPD, individual patient data; NRE, nonrandomized evidence.

a Other methods include metaregression analysis including IPD (available IPD for 10/12 studies) as presented in the study by Hubbard et al. [22] and propensity score matching based on baseline characteristics as presented in the study by Thom et al. [15].
observational bias. Thus, the results of NMAs that include NRE should be interpreted with caution. More than half (n = 16, 70%) of the studies used a scale or tool to assess for bias in NRE. The scale that was most commonly applied was the Newcastle Ottawa Scale [38]. Most studies handled the multiplicity of bias by conducting sensitivity or subgroup analyses using only RCTs. However, most studies do not explicitly report the specific method of bias adjustment. In addition, there is no widely accepted statistical software in the literature for the specific combination of randomized evidence and NRE.

Most NMAs (n = 20, 87%) provided a rationale for the inclusion of NRE but did not transparently report the method used to combine randomized evidence and NRE. The incorporation of NRE into a network of evidence may violate assumptions about transitivity and exchangeability, and thus, studies should provide reasonable justification and report clearly on the methods used.

The combination of NRE with RCTs in an NMA provides conceptual advantages but poses methodological challenges. A reasonable approach to combining both randomized evidence and NRE into a network includes performing sensitivity or subgroup analyses to investigate sources of heterogeneity, for example, performing an NMA using only randomized evidence and then comparing these results to an NMA with both randomized evidence and NRE included. Naïve pooling can be used as a first-step analysis to synthesize useful insight about the effect of including NRE into the NMA. Exploring the effect of all three methods as demonstrated in the studies by Jenkins et al. [5] and Schmitz et al. [6] would provide useful information on the treatment effect estimates produced by each approach. The evaluation of consistency and transitivity is imperative for an NMA. These two components should be evaluated to ensure that different sources of evidence are compatible and that the underlying source population is similar. Most NMAs (n = 21, 91%) in our evidence base did not use individual patient data (IPD) to adjust for patient-level covariates, a common situation as IPD is often not available [39–41]. IPD may be used to explore heterogeneity and inconsistency within a network [42–44], and access to IPD can improve parameter estimation of an NMA [42]. A critical advantage of IPD over study-level data is the ability to estimate separate effects for a patient-level effect modifier and a study-level effect modifier [45].

Our review has some limitations to note. We did not extend this review to unpublished studies, which we expect to be more voluminous than published studies. Thus, it is difficult to achieve an overall view of the most common methods used to combine randomized evidence and NRE in both published and unpublished NMAs. We also did not extend the search to 2016 and 2017, and although this would have broadened our data set, we relied on the existing database from the study by Petropoulou et al. [10], with the expectation that the general pattern would be captured. We were also limited to studies in English as we did not have the capacity for article translation. However, I (<1%) NMA from screening titles and abstracts from the study by Petropoulou et al. [10] was non-English.

5. Conclusion

The combination of both randomized evidence and NRE will continue to grow in health care because of the absence of direct evidence from RCTs and their limitations. In our evidence base, naïve pooling was most commonly used to incorporate NRE, and although justification for incorporating NRE was commonly provided, explicit reporting on the specific methods used or their justification was rare. The integration of randomized evidence and NRE requires careful consideration because of potential biases that may be introduced from NRE. The incorporation of NRE into NMAs will most likely increase in the future and will require more research to further evaluate the validity of the three approaches discussed in this scoping review.

CRediT authorship contribution statement

Kathryn Zhang: Methodology, Validation, Formal analysis, Writing - original draft, Visualization, Supervision, Project administration. Paul Arora: Conceptualization, Methodology, Validation, Writing - review & editing, Visualization, Supervision, Project administration, Funding acquisition. Neha Sati: Writing - review & editing, Visualization. Audrey Beliveau: Writing - review & editing. Nathalie Troke: Methodology. Areli Angeliki Veroniki: Writing - review & editing, Myanca Rodrigues: Writing - review & editing. Patricia Rios: Writing - review & editing. Wasifa Zarín: Writing - review & editing. Andrea C. Tricco: Writing - review & editing, Funding acquisition.

Acknowledgments

The authors would like to thank Justin J. Slater for input on confirming statistical methods for incorporating nonrandomized evidence into a network meta-analysis and Bruno Kovic for valuable input during the conceptualization of the study. All authors contributed to all aspects of the manuscript.

Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jclinepi.2019.04.023.

References

