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Logistic regression and machine learning predicted patient mortality from
large sets of diagnosis codes comparably
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Abstract
Objective: The objective of the study was to compare the performance of logistic regression and boosted trees for predicting patient
mortality from large sets of diagnosis codes in electronic healthcare records.

Study Design and Setting: We analyzed national hospital records and official death records for patients with myocardial infarction
(n 5 200,119), hip fracture (n 5 169,646), or colorectal cancer surgery (n 5 56,515) in England in 2015e2017. One-year mortality
was predicted from patient age, sex, and socioeconomic status, and 202 to 257 International Classification of Diseases 10th Revision codes
recorded in the preceding year or not (binary predictors). Performance measures included the c-statistic, scaled Brier score, and several
measures of calibration.

Results: One-year mortality was 17.2% (34,520) after myocardial infarction, 27.2% (46,115) after hip fracture, and 9.3% (5,273) after
colorectal surgery. Optimism-adjusted c-statistics for the logistic regression models were 0.884 (95% confidence interval [CI]: 0.882,
0.886), 0.798 (0.796, 0.800), and 0.811 (0.805, 0.817). The equivalent c-statistics for the boosted tree models were 0.891 (95% CI:
0.889, 0.892), 0.804 (0.802, 0.806), and 0.803 (0.797, 0.809). Model performance was also similar when measured using scaled Brier
scores. All models were well calibrated overall.

Conclusion: In large datasets of electronic healthcare records, logistic regression and boosted tree models of numerous diagnosis codes
predicted patient mortality comparably. � 2020 Elsevier Inc. All rights reserved.
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What is new?

Key findings
� Logistic regression and boosted trees predicted 1-

year mortality from large sets of diagnosis codes
comparably, in three large and diverse clinical
populations.

What this adds to what was known?
� Machine learning approaches have been used to

model interactions between many diagnosis codes
in large datasets of electronic healthcare records.

� No previous studies have directly compared regres-
sion and machine learning approaches for
modeling large sets of individual International
Classification of Diseases (ICD) codes.

What is the implication and what should change
now?
� Our results suggest that there is little or no advan-

tage to using machine learning rather than regres-
sion approaches in this particular study context.

1. Introduction

Machine learning has received increasing interest from
epidemiologists, clinicians, and health service researchers
in recent years [1e3]. Related methods have been applied
to various types of data, including gene sequences, medical
images, and electronic healthcare records [4e6]. Although
some commentators have emphasized the promise of these
methods [7,8], others have focused on associated chal-
lenges [9,10].

One area where the value of machine learning is partic-
ularly unclear is clinical prediction modeling [11e13]. Pre-
diction models can be used to inform clinical decisions and
the design of preventive interventions, and they can also
contribute to risk adjustment and causal inference methods
[14,15]. Predicting future events is a traditional focus of
machine learning methods, which typically estimate rela-
tionships between variables more flexibly than conventional
regression [16]. Although this may reduce bias in predic-
tions, it could also increase the risk of modeling associa-
tions in the data that exist only by chance such that a
model’s predictions do not work well for future patients
(overfitting) [11].

Electronic healthcare records offer growing opportu-
nities to develop prediction models using machine learning,
as large populations can often be studied using these re-
cords and larger samples reduce the risk of model overfit-
ting [11,17]. Several models have been developed with
related methods and large datasets of electronic
healthcare records [18e22]. These models often include
variables for hundreds of diagnosis codes to better capture
the complexities of patient morbidity, including potential
interactions across many conditions that may be best
modeled by flexible methods [23,24]. Regression models
with many additive coefficients may be liable to predict
some values that are too extreme.

However, it is often unclear how conventional regression
methods would have performed if directly compared with
the machine learning methods used in these studies. A
recent systematic review [25] of prognostic modeling
studies that compared logistic regression and machine
learning methods was limited by the small sample sizes
and few predictor variables used in these studies. The re-
view recommended that future research should examine
the specific study contexts in which different approaches
are suitable, particularly using large datasets and more pre-
dictors [25].

In this study, we compared the performance of logistic
regression and boosted tree models for predicting patient
outcomes from large sets of diagnosis codes given in elec-
tronic healthcare records. Such models have been used to
measure patient comorbidity and to adjust measures of
healthcare quality for patient case-mix, for example
[23,26]. To do this, we analyzed linked national datasets
of routinely collected hospital data and official death re-
cords from England.

The study populations were patients admitted for acute
myocardial infarction, hip fracture, or major surgery for
colorectal cancer. We chose these populations partly
because they represent many admissions, thus providing
relevance to a wide audience and allowing robust internal
validation of the models. These populations also vary in
terms of clinical specialty, coexisting conditions, and mor-
tality, which helped to assess the consistency of results
across diverse groups.

We focused on boosted trees as the machine learning
approach because they are often used for prediction
modeling in large routinely collected healthcare datasets
[6,22,27], they are well-established as a leading approach
to tabular data in machine learning competitions [28], and
they can be used widely without advanced computing facil-
ities because of quick fitting procedures [29].
2. Methods

2.1. Study populations

We analyzed Hospital Episode Statistics Admitted Pa-
tient Care datadadministrative data for all inpatient hospi-
tal care funded by the National Health Service (NHS) in
England [30]. Each record relates to an ‘episode’ of care
under the same senior clinician and contains 20 fields for
the International Classification of Diseases 10th Revision
(ICD-10) codes [31] relevant to that episode. The first field
contains the primary diagnosisdthe main condition treated.
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Patients with myocardial infarction (I21-22 [32,33]) and
hip fracture (S72.0-S72.2 [34,35]) were identified from
ICD-10 codes recorded as the primary diagnosis in the first
episode of each admission. Patients who underwent colo-
rectal surgery were identified from any episode with both
a relevant primary diagnosis (ICD-10: C18-20) and main
procedure (OPCS-4: H04-11, H29, H33, X14) [36e39].

We included patients aged 18 years or older or, for hip
fracture, only patients aged 60 years or older [35] whose
admission was from January 1, 2015 to December 31,
2017. If a patient had two or more admissions for the same
index condition in this period (myocardial infarction, hip
fracture, or colorectal surgery), only the first was included
in the analysis.
2.2. Outcome

The outcome was death up to and including 365 days af-
ter the date of admission or, for colorectal surgery, the date
of procedure. Mortality is the outcome most often used to
assess models of diagnosis codes in hospital settings and
to develop prediction models using electronic healthcare re-
cords [17,24,40]. We analyzed 365-day mortality, rather
than in-hospital or 30-day mortality for example, to in-
crease the effective sample size (which is related to the
number of outcome events [41]).

We used dates of death recorded in the Office for Na-
tional Statistics mortality data [42] up to 31 December
2018, providing complete follow-up for the outcome. These
official records were linked to Hospital Episode Statistics
based on each patient’s unique NHS identifier, date of birth,
sex, and postcode [43].
2.3. Predictors

We defined a binary predictor for each ICD-10 code that
denoted whether it was recorded or not in each patient’s in-
dex episode or up to 365 days before. We analyzed the first
three characters of these codes (excluding fourth charac-
ters) as coding choices at this level will be less variable
than with four characters [23]. The first three characters
define single conditions or other health-related attributes;
fourth characters define sites, subtypes, and causes [44].

In each population, we excluded three-character codes
recorded for less than 0.5% of patients in the 365-day
‘look-back period’ as these codes were so rare that they
were unlikely to improve model performance [6,26,45].
We used a 365-day period, rather than only using codes
from the index episode, as this improved model perfor-
mance in some published studies [24].

Patient age, sex, and socioeconomic status were also
included as predictors, as is common when examining
models of ICD codes [24,40]. Socioeconomic status was
measured by the national Index of Multiple Deprivation
rank of each residential area (with 1,000 to 3,000 residents
in each of 32,482 areas) [46]; we excluded patients with
missing data for this variable (1.2%; 5,346/431,626).
2.4. Model estimation

We first estimated associations between the outcome and
predictors (age, sex, socioeconomic status, and ICD codes)
as the maximum likelihood estimates of a logistic regres-
sion model. We did not fit nonlinear associations for age
or socioeconomic status or use penalized estimation, as
these choices had minimal effects on model performance
in our previous analysis of the same data [47].

We used the XGBoost [29] algorithm to develop
gradient boosted tree models [48e50], using all predictors
as before. This algorithm fits a series of tree models to the
data sequentially with each tree attempting to improve on
predictions from the previous tree [51]. These models fit
many interactions between predictors without these terms
having to be prespecified (unlike in conventional
regression).

Five boosted tree models were fitted in each population
using 100, 200, 300, 400, and 500 boosting iterations.
Further tuning parameters were held fixed as various com-
binations of these parameters gave similar maximum per-
formance across this range of boosting iterations (see
Appendix A1). The learning rate, maximum tree depth,
minimum node weight, and subsample fraction took the
values of 0.1, 5, 100, and 1, respectively (see Appendix
A1 for definitions).
2.5. Model performance

Overall model performance was measured using Brier
scores [52]. These scores equaled the mean of squared dif-
ferences between predicted probabilities of death and
observed outcomes. We scaled these scores from 0% to
100% (0% for a noninformative model and 100% if perfect)
[53].

To assess discrimination, we calculated the c-statistic.
This equaled the probability that a randomly chosen patient
who died had a greater predicted probability of death than a
randomly chosen patient who did not [54]. The c-statistic
equals one for perfect models and 0.5 for predictions made
at random.

To assess calibration, we calculated the integrated cali-
bration index (ICI) [55], calibration-in-the-large, and cali-
bration slopes [56]. The ICI and calibration-in-the-large
assess the calibration of model predictions across their
range and overall, respectively; perfect models have values
of zero. Calibration slopes equal one in perfect models,
with smaller values indicating overfitting.

For each model in each population, we first calculated
the aforementioned measures in the original data used to
fit the models (apparent performance). We then repeated
all modeling steps in each of 250 bootstrap samples and,
for each sample, calculated the performance of the resulting
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model in this sample and the original data; the difference in
performance values between the bootstrap sample and orig-
inal data defined the ‘optimism.’ Finally, an optimism-
adjusted value of each performance measure was calculated
as the apparent performance value minus the mean opti-
mism [54,57,58]. This is the bootstrap validation approach
given in the TRIPOD guidelines [59].
2.6. Secondary analyses

We conducted a secondary analysis using a 1,825-day
(5-year) look-back period. This analysis also accounted
for the exact number of days since each ICD-10 code was
last recorded rather than just whether it was recorded or
not in a given time period (see Appendix A2 for details).
This analysis, in addition to the main analysis, was prespe-
cified in a published protocol [60]. We have previously re-
ported a separate study that was specified in the same
protocol [47].

We conducted two post hoc analyses (also described in
Appendix A2). In the first analysis, we examined whether
the calibration of the logistic regression models at high pre-
dicted probabilities could be improved. We used splines to
fit nonlinear associations for age and socioeconomic status
and included interactions between three selected predictors.
In the second analysis, we assessed the performance of two
additional machine learning approachesdrandom forests
and neural networks. Data preparation was performed using
Stata (v15). R (v3.5) was used for all analysis; code to
implement the different estimation methods is given in
Appendix A3.

In response to a peer reviewer’s suggestion, we conduct-
ed two additional analyses. First, we added 500 extra boost-
ing iterations (1,000 in total) and used other combinations
of tuning parameters to see if this improved the boosted
trees’ performance. Second, we examined the performance
Table 1. Descriptive statistics for outcome and predictor variables, by popu

Acute myocardial infarc

Number of patients 200,119

Number of patients who died within 1 yr (%) 34,520 (17.2)

Patient characteristics

Median age (IQR) 70 (58 to 80)

Male (vs. female) (%) 132,162 (66.0)

Median socioeconomic status (IQR)a 4.8 (2.4 to 7.3)

ICD-10 codes

Number of codes includedb 202

Median frequency (%) of codes (IQR) 1.6 (0.8 to 3.4)

Median number of codes per patient (IQR) 6 (4 to 10)

Median agreement between codes (IQR)c 0.01 (0.00 to 0.02)

Abbreviations: IQR, interquartile range; ICD-10, International Classifica
a Scaled such that the most deprived area of residence nationally had a
b Relative frequency of each three-character code was at least 0.5% in
c Median values of Cohen’s kappa coefficient across all unique pairs of
of the regression and boosted tree models when only ICD
codes with frequencies less than 0.1% (rather than 0.5%)
were excluded from the set of predictor variables.
3. Results

The percentage of patients who died within 1 year was
17.2% (34,520/200,119) after myocardial infarction,
27.2% (46,115/169,646) after hip fracture, and 9.3%
(5,273/56,515) after colorectal surgery. In each population,
between 202 and 257 ICD-10 codes were recorded for at
least 0.5% of patients within 1 year before their admission
or procedure. This provided 168 (34,520/205; myocardial
infarction), 177 (46,115/260; hip fracture), and 25 (5,273/
212; colorectal surgery) deaths per predictor variable. Most
ICD-10 codes had low frequencies (see Table 1).

The distributions of predicted probabilities were similar
between the logistic regression and boosted tree models
overall (Fig. 1; see Fig. 2 for distributions by outcome).
The most ‘important’ variables were also similar between
models (Appendix A4). Age and metastatic cancer in the
respiratory and digestive organs were important predictors
of death in each population.

The overall optimism-adjusted performance of the
boosted trees was slightly better than that of logistic regres-
sion, as measured by Brier scores, in the myocardial infarc-
tion and hip fracture populations (Table 2). The absolute
differences in scaled Brier scores were 1.9% (95% CI:
1.7% to 2.1%) and 1.2% (95% CI: 1.0% to 1.4%), respec-
tively. Logistic regression had a slightly superior score in
the colorectal surgery population (difference 5 1.5%;
95% CI: 0.8% to 2.1%). Model discrimination, as measured
by the c-statistic, followed the same pattern with a mini-
mum value of 0.798 (95% CI: 0.796 to 0.800) across
models and populations (see Table 2).
lation

tion Hip fracture Major colorectal cancer surgery

169,646 56,515

46,115 (27.2) 5,273 (9.3)

84 (77 to 89) 70 (62 to 78)

48,622 (28.7) 32,004 (56.6)

5.4 (2.9 to 7.7) 5.7 (3.3 to 7.9)

257 209

1.8 (0.8 to 4.2) 1.6 (0.9 to 4.5)

9 (6 to 14) 7 (4 to 11)

0.01 (0.00 to 0.01) 0.01 (0.00 to 0.01)

tion of Diseases 10th Revision.
value of 0 and the least deprived area had a value of 10.
the given population.
codes (1 5 perfect agreement, 0 5 chance agreement).



Fig. 1. Frequency distributions of predicted probabilities of death, by
population and method. In the MI population, 5% of patients had pre-
dicted probabilities equal to or greater than 72.5%. The correspond-
ing values in the HF and CR populations were 73.9% and 35.7%,
respectively. MI, myocardial infarction; HF, hip fracture; CR, colo-
rectal surgery.
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Both the boosted trees and regression models were well
calibrated overall. Values of calibration-in-the-large and
calibration slopes were close to their respective ideal values
of 0 and 1 (Table 2).

However, logistic regression predictions of very high
probabilities of death were too high on average, particularly
in the colorectal surgery population (see calibration plots in
Fig. 3). In contrast, the predictions of the boosted trees
closely agreed with observed outcomes across the range
of predicted probabilities. Several ICD-10 codes were
frequent among patients with very high predicted risks of
death, and these codes were almost identical for the boosted
trees and regression models (see Appendix A5 for code fre-
quencies in the top 5% of predicted risks). The inclusion of
splines and interactions between selected codes in the logis-
tic regression models did not correct for the worse calibra-
tion observed at high predicted risks in each population
(Appendix A6).

For the boosted tree models, the maximum scaled Brier
scores were attained with 500 boosting iterations in the
myocardial infarction and hip fracture populations and
200 iterations in the colorectal surgery population
(Appendix A7). These numbers of iterations also provided
the models whose calibration slopes were closest to 1 (the
ideal value). The differences between apparent and
optimism-adjusted performance (optimism) were typically
small for the boosted tree models, but the corresponding
differences for logistic regression were even smaller
(Appendix A7).
The models estimated in the secondary analysis using a
5-year look-back period generally performed similarly to or
not as well as those from the main analysis (Appendix A8).
The random forest models did not attain scaled Brier scores
or c-statistics that were greater than those for both the logis-
tic regression and boosted tree models in any of the popu-
lations, whereas the neural networks were the worst-
performing models in each population (see Appendix A8
for results). Using up to 1,000 boosting iterations for the
boosted tree models and other combinations of tuning pa-
rameters did not improve prediction performance, neither
did using a 0.1% (vs. 0.5%) frequency threshold for
including ICD codes as predictors (Appendix A9).
4. Discussion

In large datasets of electronic healthcare records, logistic
regression and boosted tree models of numerous diagnosis
codes predicted 1-year mortality comparably. This was
consistent across the three populations of patients with
acute myocardial infarction and hip fracture and those
who underwent colorectal surgery. Both the logistic regres-
sion and boosted tree models had good discrimination and
were well calibrated overall, although the boosted trees
were better calibrated at high predicted probabilities of
death.
4.1. Interpretation of results

A potential strength of boosted trees is that they include
many interactions between predictors by design. Interac-
tions across many conditions were plausible, given relation-
ships between disorders and their management. Several
authors have advocated modeling interactions between con-
ditions for this reason [23,24,61]. However, the boosted
trees performed comparably to logistic regression models
without interactions, suggesting that interactions were un-
important overall in this context.

This finding may be partly explained by the low fre-
quencies of most ICD codes. Two codes may not be re-
corded together very often, which reduces the potential
for their interaction to improve overall model performance,
even if the interaction has a large true prognostic effect. It
may also be difficult to reliably estimate interactions be-
tween codes that are not often recorded together.

Clinical prediction problems have been described as
having unfavorable ‘signal-to-noise’ ratios that question
the potential benefits of using more flexible estimation
methods that fit many interactions [62]. Misclassification
error in the recording of diagnosis codes may add to the
‘noise’ and result in biased estimates of true interactions.
In addition, more flexible methods may be more likely to
capture spurious relationships in the data that have arisen
by chance. However, the values of optimism for the boosted
trees were reasonably small in the present study, which is



Fig. 2. Frequency distributions of predicted probabilities of death, by population, outcome, and method. Boxes are drawn from the lower to upper
quartile of predicted probabilities with a white horizontal line at the median value. Annotated values and white dots correspond to mean values.
Whiskers are drawn to the most extreme predicted probabilities that are no more than 1.5 times the interquartile range from the box. LR, logistic
regression; BT, boosted trees.
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partly explained by the large sample sizes and the shrinkage
included in the boosting process to prevent model
overfitting.

Larger study populations reduce the potential for overfit-
ting and can thereby improve the performance of more flex-
ible methods [63]. We used 3 years of national data to
provide large samples, but many investigators do not have
access to such large databases [11]. In smaller populations
or when the study outcome occurs less frequently, any ben-
efits of boosted trees over logistic regression in terms of
prediction performance are likely to reduce. In addition,
important interactions may already be known such that they
could be prespecified in regression models.

One benefit of the boosted trees was that very high pre-
dicted probabilities were better calibrated than when logis-
tic regression was used. This was not fully explained by the
splines or interactions that were added to the regression
models, which may be because interactions between many
codes needed to be added. Boosted trees fit interactions in
each iteration to improve predictions where the existing



Table 2. Prediction performance of the logistic regression and boosted tree models, corrected for optimism using 250 bootstrap samples (with 95%
confidence intervals)

Acute myocardial infarction Hip fracture Major colorectal cancer surgery

Scaled Brier score (%)

Logistic regression 34.6 (34.2 to 35.1) 22.8 (22.4 to 23.2) 17.2 (16.1 to 18.2)

Boosted trees 36.5 (36.1 to 37.0) 24.0 (23.6 to 24.4) 15.7 (14.8 to 16.6)

c-Statistic

Logistic regression 0.884 (0.882 to 0.886) 0.798 (0.796 to 0.800) 0.811 (0.805 to 0.817)

Boosted trees 0.891 (0.889 to 0.892) 0.804 (0.802 to 0.806) 0.803 (0.797 to 0.809)

Calibration-in-the-large

Logistic regression �0.001 (�0.017 to 0.015) 0.000 (�0.013 to 0.013) 0.000 (�0.032 to 0.031)

Boosted trees 0.000 (�0.016 to 0.016) 0.001 (�0.012 to 0.014) 0.002 (�0.028 to 0.033)

Calibration slope

Logistic regression 0.993 (0.984 to 1.003) 0.989 (0.977 to 1.002) 0.961 (0.936 to 0.987)

Boosted trees 1.003 (0.993 to 1.013) 1.006 (0.993 to 1.018) 0.988 (0.963 to 1.013)

Integrated calibration index

Logistic regression 0.012 (0.011 to 0.013) 0.015 (0.014 to 0.017) 0.007 (0.006 to 0.009)

Boosted trees 0.002 (0.001 to 0.003) 0.004 (0.002 to 0.006) 0.001 (0.000 to 0.003)

Results for boosted trees correspond to models with 500 boosting iterations in the myocardial infarction and hip fracture populations and 200
iterations in the colorectal surgery population.
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model works less well, such as extreme cases. In contrast,
logistic regression models may fit well overall but are not
designed to capture unusual cases with very high risks of
death because the many patients at low risk dominate
model estimates. However, interactions fitted by boosted
Fig. 3. Calibration plots for the logistic regression and boosted tree
models, by population, corrected for optimism using 250 bootstrap
samples (shown with the line of perfect calibration). In the MI and
HF populations, 3.5% of predicted probabilities were equal to or
greater than 80%. In the CR population, 2.8% of predicted probabil-
ities were equal to or greater than 50%. The black 45� line represents
perfect calibration. MI, myocardial infarction; HF, hip fracture; CR,
colorectal surgery.
trees may not be generalizable to other datasets, which
could reduce this benefit.
4.2. Relation to existing literature

To our knowledge, no previous studies have directly
compared regression and machine learning approaches for
modeling large sets of individual ICD codes specifically.
In a previous study of Hospital Episode Statistics data
(up to 2013), logistic regression models had similar
discrimination to support vector machines, neural networks,
and random forests when predicting in-hospital mortality
using small sets of comorbidities [64]. Using the same data-
sets as in the present study, we have previously found that
large sets of individual ICD codes can predict patient out-
comes better than traditional sets of comorbidities [47],
which is consistent with other studies [23,26,65].

Many analyses have compared logistic regression with
boosted trees and other machine learning approaches in
various large datasets of electronic healthcare records, with
differing results [22,27,62,66,67]. Two studies [22,27] in
which boosted trees performed better than regression
analyzed large primary care datasets, which may suggest
that boosted trees have an advantage in very heterogeneous
populations. This contrasts to our analysis which was per-
formed within populations defined by an index condition.
It is difficult to draw general conclusions from such studies,
as results may be sensitive to the specific prediction prob-
lem (such as sample size, predictors, and data quality)
and the exact implementation of algorithms. One approach
will not work best across all contexts [68,69].

A recent systematic review [25] of studies that compared
logistic regression and machine learning for clinical
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prediction modeling stated that ‘Future research should
focus more on delineating the type of predictive problems
in which various algorithms have maximal value’ (p.18).
Our study aligns with this call and suggests that logistic
regression and boosted trees predict patient mortality
comparably from numerous diagnosis codes in large elec-
tronic healthcare datasets.
4.3. Limitations of the study

Our study focused on diagnosis codes, given their cen-
tral role in analyzing patient morbidity using electronic
healthcare records. In addition, the ICD-10 coding system
has a standardized core format internationally, which may
improve the generalizability of our results to other coun-
tries. Future work could include other predictors that are
likely to have strong effects but may be recorded variably
or not at all in the datasets of different countries, such as
the hospitalization pathway. Some variables modeled in
other studies using boosted trees, including laboratory test
values and prescription information [21,27], are not re-
corded in Hospital Episode Statistics data.

Future research should conduct similar comparisons for
other populations, outcomes, and datasets to see whether
our results apply more generally. For example, in study
populations without a defined index condition, interactions
between primary and secondary diagnosis codes may
improve prediction performance. In large datasets with
greater frequencies of ICD codes, possibly in older popula-
tions, interactions between codes may be estimated with
greater precision. The external validity of models produced
using regression and machine learning approaches should
also be compared when investigators intend to use the
models in another data set or context.
4.4. Implications for research

Many studies use diagnosis codes from electronic
healthcare records to model patient morbidity [70]. Our re-
sults suggest that there is little or no advantage to using ma-
chine learning rather than regression approaches in the
particular context examined. Investigators may prefer to
use regression instead if they require a model that is trans-
parent, easily interpreted, and familiar to a wide audience.
We have previously reported a regression-based approach
for selecting small sets of ICD codes with high prediction
performance [47].

Electronic healthcare records are increasing in volume
and scope, presenting growing opportunities to use large
sets of predictors and model their relationships with more
flexible methods [17]. High-quality comparisons in large
datasets are required to determine the contexts in which
these methods should be used and when more conventional
approaches are sufficient [25]. In the context of the study
presented here, our results suggest that regression ap-
proaches perform well.
Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jclinepi.2020.12.018.
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