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Abstract

Objective: To examine the role of explainability in machine learning for healthcare (MLHC), and its necessity and significance with

respect to effective and ethical MLHC application.

Study Design and Setting: This commentary engages with the growing and dynamic corpus of literature on the use of MLHC and
artificial intelligence (Al) in medicine, which provide the context for a focused narrative review of arguments presented in favour of

and opposition to explainability in MLHC.

Results: We find that concerns regarding explainability are not limited to MLHC, but rather extend to numerous well-validated
treatment interventions as well as to human clinical judgment itself. We examine the role of evidence-based medicine in evaluating
inexplicable treatments and technologies, and highlight the analogy between the concept of explainability in MLHC and the related

concept of mechanistic reasoning in evidence-based medicine.

Conclusion: Ultimately, we conclude that the value of explainability in MLHC is not intrinsic, but is instead instrumental to
achieving greater imperatives such as performance and trust. We caution against the uncompromising pursuit of explainability, and
advocate instead for the development of robust empirical methods to successfully evaluate increasingly inexplicable algorithmic systems.

© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

The incredible growth of the machine learning for
healthcare (MLHC) field has spurred both optimism and
concern in the medical community. Proponents are drawn
to the prospect of rapid algorithmic analysis of patient data
on a massive scale enabling cheaper, more efficient, and
more accurate medical care. Purported uses include both
those which overlap with physician expertise (such as read-
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ing CT scans with similar accuracy to a radiologist [1]),
and those which will extend beyond it (such as perform-
ing analyses of voice waveform data to predict the onset of
dementia [2]). A number of machine learning techniques
central to this recent progress, such as “deep learning”,
involve the analysis of large amounts of data to generate
outputs based on highly complex sets of and interactions
between data features [3]. Such techniques have been char-
acterized as “black boxes” [4] as they can perform with a
high degree of empirical accuracy while being unable to
indicate to human observers specifically why and how a
specific output has been attained.

This “black box™ inexplicability has led to significant
disquiet amongst critics of MLHC - broadly divided into
the categories of performance-related (e.g., inexplicable
MLHC may be ineffective, or may be unable to adapt
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What is new?

Key findings:

» Explainability is instrumental to important aims in
machine learning for healthcare (MLHC), but a
closer analysis in its full context reveals that ex-
planability cannot be considered intrinsically essen-
tial to MLHC.

What this adds to what is known?

» This work explores the connection between explain-
ability in MLHC and its analogue of mechanistic
reasoning in evidence-based medicine.

What is the implication, what should change now?

* MLHC should not be held to a unique standard of
explainability beyond that required of other medical
interventions.

* Established tools used to validate evidence-based
medicine should be adapted to enable empirical
evaluation of even completely inexplicable MLHC
technologies.

to changes in clinical circumstances) and ethical (e.g., in-
explicable MLHC may interfere with a patient’s right to
understand their medical care) concerns. Explainability is
commonly cited as an important principle in MLHC guide-
lines [5,6], with some authors going so far as to identify
explainability as an essential prerequisite for MLHC mod-
els to be ethical and effective in clinical practice[7]. Sub-
sequently, the pursuit of explainability has become an area
of significant importance in contemporary MLHC research,
emphasized by academics in computer science [4,8—12]
medicine[ 12-14], and bioethics [7], as well as major reg-
ulatory bodies[15] and healthcare technology companies
[16].

Within this paper we explore these concerns, the prac-
tical and ethical reasoning behind them, and the potential
trade-offs that arise between explainability and other de-
sired characteristics of MLHC such as accuracy or effi-
ciency. We seek to situate concerns about explainability in
MLHC within the context of concerns about explainability
in medicine more broadly, and highlight that the challenges
posed to explicability by deep learning technology are far
from unique. Rather, we find that medicine has a long
and ongoing history of harnessing technologies (in a broad
sense, including pharmaceuticals, procedures, and diagnos-
tic aids) for which physicians lack clear mechanistic expla-
nations. In other words, medicine has not traditionally held
“mechanistic reasoning” (explanations forged by way of
inference from proposed mechanisms or physiologic ratio-
nale) as strictly necessary for the implementation of a new
clinical tool. We turn to an examination of the practice of
evidence-based medicine (EBM), which includes the devel-
opment of tools designed to allow empirical validation of

even inexplicable interventions and thereby privileges em-
pirical evidence above mechanistic proof. Ultimately, we
conclude that, while explainability confers a positive value
to MLHC, this value is instrumental rather than intrinsic.
We caution against the single-minded pursuit of explain-
ability at the expense of the other opportunities presented
by MLHC, and advocate for a moderated approach which
relies on empiricism to guide the validation of new tech-
nologies in the same way that it already validates new
medicines and procedures.

2. The desire for explainability in MLHC

Proponents of explainability argue that systemic opac-
ity will interfere with the ability of human oversight to
identify and address errors arising from naive misinter-
pretation of data without contextual clinical understanding
[7,10]. A prototypical example of this is an MLHC model
which erroneously identified asthma as a protective factor
against pneumonia severity, when in reality the “protective
effect” was a manifestation of the aggressive use of in-
tensive care for asthmatic patients [17]. Similar concerns
arise regarding the inability of models to properly identify
and highlight findings which are rare but highly conse-
quential, such as an aggressive subtype of lung cancer on
radiographic imaging [18]. In light of these failures, ex-
plainable MLHC may be expected to facilitate a sort of
partnership between the physician and the algorithm, with
human oversight preventing errors and inaccuracies.

The pursuit of explainability can, however, exert cost on
performance. Extracting information from models which
may have millions of parameters and presenting this in-
formation in a way understandable to the human mind
is an inherently reductive process [19]. Trade-offs may
arise between accuracy and explainability [20,21], as re-
ducing opacity may motivate the use of more simplistic
models, or the evaluation of smaller and more comprehen-
sible pools of data. However, MLHC models are valued
precisely because they have the potential to process infor-
mation in ways—and at speeds—that are impossible for
human brains to match. Even if such insight is achieved,
relying upon human oversight into the algorithmic predic-
tion system raises a broad new range of human factors
challenges [22]. Explainability is therefore not costless,
and from the perspective of MLHC performance it must
be viewed as one among several means rather than an ul-
timate end in itself.

There are also significant concerns surrounding the abil-
ity of inexplicable models to fulfil the ethical duties of
medicine and achieve the trust of patients and providers;
informed by the sense that the frameworks established
for artificial intelligence (AI) should echo the principles
and standards to which physicians are held [23]. Guide-
lines for ethical production and the use of artificial intelli-
gence systems, such as the one published by the European
Commission, require Al to uphold principles of explica-
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bility, prevention of harm, fairness, and human autonomy
[24]. These overarching requirements parallel the prima
facie principles of medical practice and biomedical ethics:
beneficence, non-maleficence, justice, and autonomy [25].

From this perspective, it becomes clear that the desire
for explainability in Al parallels the desire for transparency
from human physicians. The expectation in both cases is
that the patient will be provided with adequate and coher-
ent information needed to make informed choices which
result in predictable and ideal outcomes [26]. From the
provider perspective, clinicians have identified explainabil-
ity as an important element of transparency, and a requisite
to justify their reliance upon a given MLHC model[27]—
particularly in the context of informed consent [28], legal
liability concerns, and a lack of regulatory clarity [29].

Patients and providers alike seek the assurance that an
MLHC algorithm is making appropriate recommendations,
and explainability provides a way to better understand, en-
gage with, or control MLHC. Nonetheless, we propose that
it is difficult to argue that an interest in explainability is in-
trinsically morally valuable, let alone foundational to ethi-
cal acceptance of a new technology given that trust in pre-
decessor technologies in healthcare has been established
through empirical means, typically without the clarity of
understanding mechanisms. Just as in the case of perfor-
mance, explainability is an instrumental means of estab-
lishing and maintaining trust and control, but is not a crit-
ical end in and of itself.

3. The reality of (Un)explainability in healthcare

In discussions around the need for explainability in
MLHC, such as Char and colleagues’ declaration that “ML
systems in medicine must have an explainable architecture,
designed to align with human cognitive decision-making
processes” [7], there is irony in recognizing that these hu-
man cognitive processes themselves often escape explain-
ability [20,30-32]. One sees this empirically in the finding
that, in contrast with the rules-based approaches of be-
ginners, the inferences of expert radiologists tend to be
so holistic that their underlying reasoning cannot be ex-
plained in natural language [33,34]. What are presented as
‘explanations’ in such cases may in fact be post-hoc ratio-
nalizations. Indeed, it has been argued that every diagnosis
is, to some degree, a “clinical diagnosis”—relying on sub-
tleties of clinical judgment which extend beyond a clearly
explainable or rules-based framework[35].

Beyond the cognitive domain, inexplicability is also per-
vasive in the various tools at the clinician’s disposal. From
acetaminophen [36] to metformin [37], or many antide-
pressants and mood stabilizers [38], numerous medications
are prescribed regularly—and to great effect—despite the
fact that their mechanisms of action are partially or even
entirely unclear. Even certain surgical procedures, such as
gastric bypass for obesity [39—41], are performed despite
their mechanisms of action not being fully understood.

This lack of explainability does not, however, diminish the
utility of such therapies.

Ultimately, the primary goals of medicine are prag-
matic: to relieve suffering and promote health [6]. The elu-
cidation of mechanisms comes secondary to this goal, inso-
far as understanding may enable better intervention, may
support informed consent, or may provide greater com-
fort to patients and families. Some have, in fact, contested
the very concept of explainability in medicine: for this
reason, explainability lacks a consensus definition within
the medical context [42]. Instead, modern medicine has
constructed a scientific edifice to evaluate the pragmatic
impact of interventions whose mechanisms are not fully
understood [43]—the robust infrastructure of EBM, which
privileges outcomes as its measure of success.

4. Empirically validating the inexplicable

The history of tools used in medical practice which have
resisted mechanistic explanation reaches its apotheosis in
the paradigm of EBM which, in exploring the epistemo-
logical tensions surrounding these longstanding therapies,
has already precipitated the development of a relevant con-
cept: mechanistic reasoning. Mechanistic reasoning refers
to the inferential use of a proposed process of action to
rationalize the expectation of a given outcome, which is
broadly analogous to the role invoked for explainability in
the MLHC context [44] (though indeed it is worth noting
that, in both contexts, this reasoning is often performed a
posteriori working backwards from an observed result).

At its core, EBM revolves around using the best avail-
able evidence (e.g., randomized controlled trials rather than
anecdotes), in combination with individual clinical exper-
tise and patient values, to guide decision-making [45—47].
However, discourse surrounding the role of mechanistic
reasoning in EBM has not yet reached consensus [44,48].
Traditionally, mechanistic reasoning has been considered
lesser than correlative or statistical reasoning in hierarchies
of evidence [48,49]. This view is supported by the unpre-
dictable nature of human physiology—biological mecha-
nisms tend to have high complexity, and a probabilistic dis-
position which challenges mechanistic reasoning[44]. Con-
sequently, mechanistic explanations can lead to false con-
clusions, and mechanistic reasoning alone has been shown
to have a high degree of fallibility. At times empirical re-
sults can be entirely contrary to mechanistic expectations,
as in the case of prophylactic antiarrhythmic drugs actually
acting to increase mortality from arrhythmia after recurrent
acute myocardial infarction [50]. Mechanistic reasoning is
not, therefore, sufficient to guide evidence-based practice.

Plausible mechanistic suggestions are critical in the de-
velopment of new hypotheses [51], and may be useful in
extrapolating the results of a statistical finding to a new
population [52,53]. Biological plausibility features as one
of nine Bradford Hill criteria for defending any suggestion
of causality (although with the explicit caveat that it is
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wholly dependent on contemporaneous biological knowl-
edge, and therefore not always available) [54]. Biological
plausibility has also gathered traction in more recent inter-
pretations of causality like the Russo-Williamson Thesis,
which suggests that causality in the health sciences re-
quires both mechanistic and probabilistic (or “difference-
making”) evidence, and that the former can complement
the latter [55,56]. Mechanistic reasoning does have demon-
strable utility as a form of evidence, but considering
EBM’s progress in its absence, we argue that such reason-
ing cannot be considered strictly necessary for evidence-
based practice.

At its core, the issue of explicability in MLHC be-
comes a question about appropriate rationale: what type
and amount of evidence is compelling enough for the im-
plementation of a new intervention in clinical practice?
In the case of mood stabilizers, effective interventions
with undetermined mechanisms were embraced rather than
discarded—empiricism was used to circumvent the demand
for mechanistic reasoning. In other words, clinicians and
policy makers effectively chose to tolerate mechanistic un-
certainty in exchange for well-evidenced utility. Rigorous
clinical testing is able to validate such interventions, char-
acterizing their full range of positive and negative effects in
the absence of any knowledge of their mechanisms. Thus,
clinical practice under the EBM framework is privileged
towards statistically sound evidence that an intervention
does work, even in the absence of mechanistic evidence as
to why it would.

Similarly, the benefits and consequences of MLHC can
be discovered and validated consequentially, through robust
empirical analysis of even its most inexplicable outputs.
Empirical evidence is also relevant to the various ethical
dimensions in which a need for explainability in MLHC
has been invoked. With fairness, for example, the relevant
dimension is the performance of the algorithm for different
groups, which depends on the (empirically visible) outputs
of the model, rather than any underlying reasoning. In-
deed, prominent case studies have demonstrated precisely
how explainable (and not intentionally biased) models can
nonetheless deliver biased results that are only apparent
upon empirical analysis [57,58]. Similarly, the trust of both
patients and physicians might be established through em-
pirical evaluation and regulatory approval similar to that
of any pharmaceutical or other medical technology.

It is important to highlight that awareness of the poten-
tial costs of explainability, however, does not imply that
inexplicable models are superior in all cases. Indeed, in
certain medical contexts (such as predicting heart failure
outcomes from claims data) explainable logistic regression
models have demonstrated similar efficacy when compared
to more complex MLHC systems [59]. Small disparities
may not be clinically meaningful, and in certain contexts
explainability may be considered worthwhile in exchange
for a small degree of reduced performance [60]. Further,
significant work is being done toward the development of

methods to improve the explainability of complex meth-
ods, offering a hope of “opening the black box” and en-
abling presently inscrutable deep learning architectures to
become explainable [61-63]. As with other healthcare in-
terventions whose mechanisms were better clarified over
time, increasing explainability may arise in parallel with
or subsequent to the implementation of black-box models
through evidence-based evaluation.

There are specific and valid reasons for concern regard-
ing the challenges of empirically validating MLHC tools,
such as concerns that shifts in the underlying population
may render a model inaccurate over time [64], or concerns
that a continuously updating model may develop aberrant
characteristics. These concerns can and should drive the
adaptation of rigorous empirical methods to the specific
needs of the MLHC context. Yet as with numerous other
tools used in medicine, from pharmaceuticals to clinical
reasoning aids to the very cognition of clinicians, the util-
ity of MLHC is largely independent of our ability to fully
explain its actions. Explainability has its value in this con-
text, but to regard it as essential for effective and ethical
MLHC is to apply a unique burden of proof to this partic-
ular class of emerging technology and to underestimate the
capabilities of well-validated EBM concepts to be adapted
to succeed in this novel context.

5. Conclusion

In examining the reasons that explainability tends to
be a desirable feature of contemporary MLHC, we ob-
serve that these reasons are instrumental rather than intrin-
sic. Explainability is sought as a means toward ensuring
model effectiveness and developing trust in both patients
and providers. While explainability in MLHC may indeed
advance these interests, an examination of other domains
reveals that the scientific community has robust and well-
established mechanisms for evaluating the effectiveness of
(and developing trust in) tools that are not mechanistically
explained or explainable. It must not be forgotten that sig-
nificant trade-offs may arise between explainability and
other interests, such as accuracy and overall performance.
To narrowly emphasize the importance of explainability
for the use of a medical tool would be to reject not only
certain types of MLHC tools but also the well-validated
and trusted edifice of EBM.

Continued work must be done to explore the trade-offs
inherent in the pursuit of explainability in MLHC in any
given domain. Tensions are likely to arise between raw
predictive performance and the abstractive simplification
necessary for an algorithm to be explainable, particularly
in the bedside context. Achieving an optimal balance will
depend on the specifics of the clinical context, and the
strength of the validation procedures in place. Ultimately,
however, we must not forget that artificially intelligent
tools are attractive precisely because they are able to per-
form tasks of data synthesis and analysis at a scale and
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speed not achievable by human cognition. In limiting ma-
chines to reasoning as humans do, we may rob them—
and ourselves—of their unique potential to solve problems
which we cannot.
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