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Abstract

IMPORTANCE Artificial intelligence (AI) has gained considerable attention in health care, yet
concerns have been raised around appropriate methods and fairness. Current AI reporting guidelines
do not provide a means of quantifying overall quality of AI research, limiting their ability to compare
models addressing the same clinical question.

OBJECTIVE To develop a tool (APPRAISE-AI) to evaluate the methodological and reporting quality
of AI prediction models for clinical decision support.

DESIGN, SETTING, AND PARTICIPANTS This quality improvement study evaluated AI studies in the
model development, silent, and clinical trial phases using the APPRAISE-AI tool, a quantitative
method for evaluating quality of AI studies across 6 domains: clinical relevance, data quality,
methodological conduct, robustness of results, reporting quality, and reproducibility. These domains
included 24 items with a maximum overall score of 100 points. Points were assigned to each item,
with higher points indicating stronger methodological or reporting quality. The tool was applied to a
systematic review on machine learning to estimate sepsis that included articles published until
September 13, 2019. Data analysis was performed from September to December 2022.

MAIN OUTCOMES AND MEASURES The primary outcomes were interrater and intrarater reliability
and the correlation between APPRAISE-AI scores and expert scores, 3-year citation rate, number of
Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) low risk-of-bias domains, and overall
adherence to the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis
or Diagnosis (TRIPOD) statement.

RESULTS A total of 28 studies were included. Overall APPRAISE-AI scores ranged from 33 (low
quality) to 67 (high quality). Most studies were moderate quality. The 5 lowest scoring items included
source of data, sample size calculation, bias assessment, error analysis, and transparency. Overall
APPRAISE-AI scores were associated with expert scores (Spearman ρ, 0.82; 95% CI, 0.64-0.91;
P < .001), 3-year citation rate (Spearman ρ, 0.69; 95% CI, 0.43-0.85; P < .001), number of
QUADAS-2 low risk-of-bias domains (Spearman ρ, 0.56; 95% CI, 0.24-0.77; P = .002), and
adherence to the TRIPOD statement (Spearman ρ, 0.87; 95% CI, 0.73-0.94; P < .001). Intraclass
correlation coefficient ranges for interrater and intrarater reliability were 0.74 to 1.00 for individual
items, 0.81 to 0.99 for individual domains, and 0.91 to 0.98 for overall scores.

CONCLUSIONS AND RELEVANCE In this quality improvement study, APPRAISE-AI demonstrated
strong interrater and intrarater reliability and correlated well with several study quality measures.
This tool may provide a quantitative approach for investigators, reviewers, editors, and funding
organizations to compare the research quality across AI studies for clinical decision support.
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Key Points
Question Can quantitative methods be

used to evaluate the robustness of

artificial intelligence (AI) prediction

models and their suitability for clinical

decision support?

Findings In this quality improvement

study, the APPRAISE-AI tool was

developed to evaluate the

methodological and reporting quality of

28 clinical AI studies using a quantitative

approach. APPRAISE-AI demonstrated

strong interrater and intrarater reliability

and correlated well with other validated

measures of study quality across a

variety of AI studies.

Meaning These findings suggest that

APPRAISE-AI fills a critical gap in the

current landscape of AI reporting

guidelines and provides a standardized,

quantitative tool for evaluating the

methodological rigor and clinical utility

of AI models.
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Introduction

Advances in computer science and data collection have fueled the development of artificial
intelligence (AI) applications across the health care sector in recent years. This proliferation of AI in
medicine has been met with major interest from various stakeholders, including patients,
practitioners, and even regulatory bodies such as the US Food and Drug Administration. Although
much of the initial excitement for these novel AI solutions has been centered around their
performance, there has been growing attention toward ensuring the reproducibility, safety, and
fairness of these applications.1 Indeed, recent work2 has highlighted several methodological
concerns within the existing clinical AI literature, including poor adherence to conventional reporting
guidelines, inadequate sample size (ie, low number of events per variable), no external validation,
limited assessment of calibration, and bias.

These concerns have prompted the development of several reporting guidelines along the AI
pathway, including MI-CLAIM, TRIPOD-AI, and STARD-AI for model development3-5; DECIDE-AI for
model evaluation6; and CONSORT-AI and SPIRIT-AI for clinical trials evaluation.7,8 Other reporting
guidelines have also been adopted within various clinical domains, including cardiology (PRIME),9

dentistry,10 medical imaging (Radiomics Quality Score),11 ophthalmology,12 and urology
(STREAM-URO).13 These guidelines are valuable in ensuring transparency, reproducibility, and
comparability in AI research by providing a list of minimum reporting items for AI studies. However,
they nevertheless do not provide a means of quantifying the overall quality of clinical AI research,
which necessitates evaluating methodological soundness, appropriateness to clinical targets, and
more. This lack of a quantitative assessment tool makes it difficult to evaluate the robustness of AI
models and their readiness for clinical use, particularly when comparing 2 models addressing the
same clinical question.

Given this substantial gap, there is a pressing need for a validated tool that not only assesses the
methodological and reporting quality of AI studies in health care but also provides a standardized,
quantitative measure of their clinical utility and safety. Such a tool would be of immense value to
investigators, reviewers, and funding organizations, enabling them to compare the quality of
research across AI studies and facilitate safer and more effective integration of AI tools into clinical
practice.

Here, we propose the APPRAISE-AI tool, an instrument to evaluate the methodological and
reporting quality of AI studies for clinical decision support. We demonstrate its validity and reliability
on existing AI literature. Finally, we provide examples on how to use APPRAISE-AI to assess the most
common types of clinical AI studies, including image analysis, survival analysis, and classification.

Methods

Development of APPRAISE-AI
Ethics approval and informed consent were not needed for this quality improvement study because
it involved a systematic review of published studies and did not involve patient data, in accordance
with 45 CFR §46. This project was conducted in compliance with the Standards for Quality
Improvement Reporting Excellence (SQUIRE) reporting guideline.14

APPRAISE-AI was designed to evaluate primary studies that develop, validate, or update any
machine learning model for clinical decision support. Candidate items were initially generated
following a literature review of existing reporting guidelines on AI in medicine.13 These items were
further refined through critical discussion by a panel of experts in clinical AI research, which included
clinicians (J.C.C.K., A.K., X.B.F., and G.S.K.), AI experts (M.B.A.M., X.B.F., M.M., and A.E.W.J.), clinical
epidemiologists (K.L. and G.S.K.), bioethicists (M.D.M.), and journal editors (A.E.W.J.). Item
descriptions were modified from our previous reporting guideline.13 Scores were then assigned to
each APPRAISE-AI item, with higher scores reflecting stronger methodological or reporting quality.
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The final APPRAISE-AI tool consisted of 24 items with a maximum overall score of 100 points
(eTable 1 in Supplement 1). Points were weighted more heavily toward methods (items 4-12, of 51
points), results (items 13-19, of 27 points), and transparency (item 24, of 10 points), because these
areas were commonly underreported according to previous reviews.2 Scoring options for each item
were assigned on the basis of current best practices in AI and prediction model reporting. For
example, items 1 to 3, 5, 11 to 14, and 20 to 23 were scored according to recommendations from the
Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) reporting guideline,15 a well-established reporting guideline for prediction models in the
medical literature.

For model development, generalizability of supervised learning models is best achieved
through training on diverse, representative data with annotated labels that accurately reflect the
clinical problem (items 4 and 6, respectively).16 APPRAISE-AI assesses data sources on the basis of
routinely captured proxies of patient diversity, including number of institutions, health care setting,
and geographical location. Although model evaluation in multiple countries represents a high bar of
evidence, it is deemphasized in APPRAISE-AI compared with other measures because of its inherent
logistical complexity. Instead, a greater focus is placed on incorporating historically
underrepresented groups, such as community-based, rural, or lower income populations. Data
preprocessing steps (item 7) are recognized as important components in both non-AI and AI
reporting guidelines including how data were abstracted, how missing data were handled, and how
features were modified, transformed, and/or removed.6,15 Methods to address class imbalance were
excluded because recent simulation studies have shown that imbalance correction may worsen
model calibration despite no clear improvement in discrimination.17 Data splitting (item 8) was
graded according to established hierarchies of validation strategies.18 Although there is no universally
accepted method for determining minimum sample size for AI model development and validation,19

prior simulation studies have shown that AI models may require “at least 10 events per variable”20 to
achieve stable performance (item 9).

For model evaluation, item 10 reflects the importance of comparing AI models against the
accepted reference standard (eg, clinician judgment), regression approaches, and/or existing
models.21 Although area under the receiver operating characteristic curve is commonly reported to
characterize model performance, other measures may be more relevant, depending on the clinical
context (item 15). For example, researchers may wish to consult the Metrics Reloaded
recommendations for image analysis.22 Other measures that assess model calibration, or the level of
agreement between predictions and observed outcomes, should be considered. In particular,
quantifying net benefit through decision curve analysis enables one to determine whether their AI
model is doing more good than harm (item 16).23 Ratings used to assess quality of bias assessment
are based on patient-specific or task-specific subgroup analysis and exploratory error analysis from
the medical algorithmic audit proposed by Liu and colleagues (items 17 and 18, respectively).1 Model
explanations (item 19) are considered optional at this time because of limitations with consistency
and reliability.24 Finally, item 24 emphasizes the importance of addressing the ongoing
reproducibility crisis in AI research, by promoting the practice of making research data and models
publicly available to enable the replication and verification of findings.25

Each APPRAISE-AI item was mapped to one of the following domains: clinical relevance, data
quality, methodological conduct, robustness of results, reporting quality, and reproducibility
(Table 1). Scores could then be tabulated to determine the overall study quality (overall APPRAISE-AI
score) and domain quality (APPRAISE-AI domain score).

Using APPRAISE-AI to Assess AI Studies to Predict Sepsis
The APPRAISE-AI tool was applied to a recent systematic review on machine learning to predict
sepsis, which included articles published until September 13, 2019.26 Each article was independently
graded by 2 raters using the APPRAISE-AI tool. For items that indicate “select one of the following,”
raters were instructed to score the highest possible value where applicable. For example, if a study
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provided both internal (+1) and external (+3) validation, a score of 3 was recorded for item 8. All other
items were considered “select all that apply.” For example, if a study included data from multiple
countries (+1) and community hospitals (+2), a score of 3 would be assigned for item 4.

Three experts (A.E.W.J., M.B.A.M., and X.B.F.) in clinical AI research independently assessed
each article according to 8 criteria using a scale of 1 to 5 (1, very weak; 5, very strong) (eTable 2 in
Supplement 1). Criteria scores were summed to generate an overall expert score for each article
(maximum overall score of 40 points). All information regarding the authors, affiliations, institutions,
source of funding, and journal for each article were redacted to mask both groups. Assessors did not
have access to other assessors’ scores. We provide additional detailed examples and explanations of
high-quality studies for various study types, including image analysis, classification, and survival
analysis in eTables 3, 4, and 5 in Supplement 1.

Statistical Analysis
Validity of APPRAISE-AI
Spearman ρ was used to assess construct validity in the following ways. First, the correlation
between median overall APPRAISE-AI and expert scores was measured. Second, the association of

Table 1. APPRAISE-AI Domains and Corresponding Itemsa

Domain and items Domain score
Clinical relevance

1. Title

4
2. Background

3. Objective and problem

21. Implementation into clinical practice

Data quality

4. Source of data

24
5. Eligibility criteria

6. Ground truth

7. Data abstraction, cleaning, preparation

Methodological conduct

8. Data splitting

209. Sample size calculation

10. Baseline

Robustness of results

15. Model evaluation

20

16. Clinical utility assessment

17. Bias assessment

18. Error analysis

19. Model explanation

Reporting quality

13. Cohort characteristics

12
20. Critical analysis

22. Limitations

23. Disclosures

Reproducibility

11. Model and processing description

20
12. Hyperparameter tuning

14. Model specification

24. Transparency

Overall score 100
a Please refer to eTable 1 in Supplement 1 for a detailed breakdown of each item.

The overall APPRAISE-AI score was graded as follows: very low quality, 0 to
19; low quality, 20 to 39; moderate quality, 40 to 59; high quality, 60 to 79;
and very high quality, 80 to 100.
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overall APPRAISE-AI scores with 3-year citation rate, defined as the number of nonself citations from
the Scopus database within the first 3 years of publication, was measured. This time frame was
selected because all articles were published at least 3 years before this study. Finally, APPRAISE-AI
was compared against other widely used tools, including the Quality Assessment of Diagnostic
Accuracy Studies (QUADAS-2) criteria and the TRIPOD statement.15,27 Specifically, the associations
of overall APPRAISE-AI scores with number of QUADAS-2 low risk-of-bias domains and overall
adherence to TRIPOD were measured.

Reliability of APPRAISE-AI
Intraclass correlation coefficients (ICCs; calculated with 2-way random effects, absolute agreement,
and single measurement) were used to measure interrater and intrarater reliability for each
APPRAISE-AI item and domain. For intrarater reliability, each article was regraded by the same
nonexpert raters (J.C.C.K. and A.K.) 3 months after the first assessment. ICC interpretation was based
on Koo et al,28 in which ICC values less than 0.50 indicated poor reliability, values of 0.50 to 0.75
indicated moderate reliability, values of 0.75 to 0.90 indicated good reliability, and values greater
than 0.90 indicated excellent reliability.

Sample Size Calculations
A sample size of 28 studies was sufficient to achieve at least 80% power to detect a Spearman ρ of
0.53 or higher and an ICC of 0.45 or higher, assuming a significance level of 2-sided P < .05
(eAppendix in Supplement 1). All analyses were conducted using SPSS version 26 (IBM). Data analysis
was performed from September to December 2022.

Results

Quality of AI Studies to Predict Sepsis
A total of 28 studies were included, published between 2010 and 2019. Of these, 24 described AI
models in the model development phase. One study29 included both silent trial and single-group
clinical trial phases. Two studies30,31 evaluated their AI models through single-group clinical trials,
whereas another study32 conducted a randomized clinical trial comparing their AI model against the
standard of care. The APPRAISE-AI scores are summarized in the Figure. The median overall score
was 48 (moderate quality) and ranged from 33 (low quality) to 67 (high quality), with 22 of 28 studies
considered moderate quality (see the Data Sharing Statement in Supplement 2). The overall quality
of studies did not improve over time from 2010 to 2019 (correlation coefficient, 0.12; 95% CI, −0.26
to 0.48; P = .53). All studies that prospectively evaluated their models, either through silent or
clinical trial phases, achieved at least moderate overall quality. The 5 lowest scoring items, based on
percentage of the maximum possible score for each item, were source of data, sample size
calculation, bias assessment, error analysis, and transparency. Although studies performed well in
the clinical relevance and reporting quality domains, they had lower scores in methodological
conduct, robustness of results, and reproducibility.

Validity and Reliability of APPRAISE-AI
Overall APPRAISE-AI scores were highly correlated with consensus expert ratings (Spearman ρ, 0.82;
95% CI, 0.64-0.91; P < .001) (Table 2). In addition, overall APPRAISE-AI scores were significantly
associated with 3-year citation rates (Spearman ρ, 0.69; 95% CI, 0.43-0.85; P < .001), number of low
risk-of-bias domains on QUADAS-2 (Spearman ρ, 0.56; 95% CI, 0.24-0.77; P = .002), and overall
adherence to TRIPOD (Spearman ρ, 0.87; 95% CI, 0.73-0.94; P < .001).

Interrater reliability was moderate to excellent, with ICCs ranging from 0.74 to 1.00 for item
scores, 0.81 to 0.92 for domain scores, and 0.91 for overall scores (Table 3). APPRAISE-AI also
demonstrated moderate to excellent intrarater reliability, with ICCs ranging from 0.74 to 1.00 for item
scores, 0.89 to 0.99 for domain scores, and 0.98 for overall scores.
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Discussion

There is growing recognition toward ensuring a safe and ethical implementation of AI tools into
clinical practice. However, recent evidence suggests that many AI studies fail to follow best practices
in developing prediction models.2,25 There remains a need for a standardized tool to quantify the
robustness and clinical utility of AI models. In this quality improvement study, the APPRAISE-AI tool
addresses this gap and differs from current AI reporting checklists by providing additional granularity
in the assessment of methodological and reporting quality. Each APPRAISE-AI item assigns different
point values on the basis of prespecified criteria that reflect current best practices in AI. By providing

Figure. Mean APPRAISE-AI Item, Domain, and Overall Scores for the 28 Studies Using Artificial Intelligence
to Predict Sepsis
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Table 2. Association of Overall APPRAISE-AI Scores With Other Measures of Study Quality

Measure Spearman ρ (95% CI) P value
Consensus expert score 0.82 (0.64-0.91) <.001

3-y Citation rate 0.69 (0.43-0.85) <.001

No. of low risk-of-bias domains on Quality Assessment
of Diagnostic Accuracy Studies–2

0.56 (0.24-0.77) .002

Adherence to Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis reporting guideline

0.87 (0.73-0.94) <.001
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an overall and domain-specific score (clinical relevance, data quality, methodological conduct,
robustness of results, reporting quality, and reproducibility), APPRAISE-AI enables researchers to
gain both macro-level and micro-level insights on the quality of evidence generated to support their
AI models.

A recent systematic review26 revealed a high risk of bias among the majority of studies (68%)
included in this analysis. These studies covered various phases of the AI life cycle, from model
development to clinical trial assessment. APPRAISE-AI was applicable in all settings and
demonstrated moderate to excellent interrater and intrarater reliability. Furthermore, it correlated
well with other validated measures of study quality, including expert ratings, QUADAS-2, TRIPOD,
and 3-year citation rates. APPRAISE-AI highlighted additional AI-specific limitations of each study.
The 3 lowest domains identified were methodological conduct, robustness of results, and
reproducibility, which arguably are the most important characteristics in determining the scientific
rigor and generalizability of an AI model. Overall study quality ranged from low to high, with the
majority of studies demonstrating moderate quality.

Table 3. Interrater and Intrarater Reliability of APPRAISE-AI Items, Domains, and Overall Score
Determined by ICCs

Variable

ICC (95% CI)a

Interrater reliability Intrarater reliability
Item

Title 0.76 (0.61-0.86) 0.76 (0.62-0.85)

Background 0.77 (0.64-0.86) 0.77 (0.64-0.86)

Objective and problem 0.74 (0.59-0.84) 0.74 (0.59-0.84)

Source of data 0.90 (0.80-0.95) 0.99 (0.98-0.99)

Eligibility criteria 0.77 (0.54-0.87) 0.90 (0.84-0.94)

Ground truth 1.00 1.00

Data abstraction, cleaning, preparation 0.80 (0.67-0.88) 0.98 (0.97-0.99)

Data splitting 0.75 (0.61-0.84) 1.00

Sample size calculation 1.00 1.00

Baseline 0.83 (0.72-0.89) 0.97 (0.95-0.98)

Model description 0.77 (0.63-0.86) 0.94 (0.90-0.97)

Hyperparameter tuning 0.76 (0.62-0.85) 0.96 (0.92-0.98)

Cohort characteristics 0.80 (0.68-0.88) 0.98 (0.96-0.99)

Model specification 0.81 (0.69-0.88) 0.90 (0.84-0.94)

Model evaluation 0.79 (0.66-0.87) 0.96 (0.94-0.98)

Clinical utility assessment 0.78 (0.63-0.87) 0.95 (0.91-0.97)

Bias assessment 0.79 (0.62-0.89) 0.96 (0.94-0.98)

Error analysis 1.00 1.00

Model explanation 0.82 (0.71-0.89) 0.96 (0.94-0.98)

Critical analysis 0.84 (0.74-0.90) 1.00

Implementation into clinical practice 0.77 (0.64-0.86) 0.92 (0.87-0.95)

Limitations 0.79 (0.67-0.87) 1.00

Disclosures 1.00 1.00

Transparency 0.95 (0.92-0.97) 0.99 (0.99-1.00)

Domain

Clinical relevance 0.83 (0.70-0.90) 0.89 (0.80-0.94)

Data quality 0.82 (0.70-0.89) 0.97 (0.95-0.98)

Methodological conduct 0.85 (0.75-0.91) 0.98 (0.97-0.99)

Robustness of results 0.81 (0.63-0.90) 0.94 (0.90-0.96)

Reporting quality 0.86 (0.78-0.92) 0.99 (0.99-1.00)

Reproducibility 0.92 (0.86-0.95) 0.99 (0.98-1.00)

Overall score 0.91 (0.85-0.95) 0.98 (0.96-0.99)

Abbreviation: ICC, intraclass correlation coefficient.
a ICCs were calculated with 2-way random effects,

absolute agreement, and single measurement.
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APPRAISE-AI offers a standardized framework for the quantitative evaluation of AI studies for
clinical decision support, which may be a useful resource for conducting systematic reviews. To
illustrate its utility, we provide detailed examples and explanations of high-quality studies for various
study types, including image analysis, classification, and survival analysis (eTables 3, 4, and 5 in
Supplement 1). Other potential applications include use by funding agencies to inform grant
allocation for AI research, by journal editors to prescreen submitted articles, and by implementers to
survey the field for high-quality AI tools. For instance, hospitals may wish to consider only AI models
that are deemed high or very high quality according to APPRAISE-AI because they have the highest
scientific rigor and the greatest potential in improving patient outcomes.

Limitations
Several limitations merit discussion. Although the construct validity of the APPRAISE-AI tool was
successfully demonstrated using a previously published systematic review of sepsis AI models,26 a
considerable proportion of those studies (36%) used the Medical Information Mart for Intensive Care
database. As such, the variability of data quality domain scores may have been limited. Therefore,
use of the APPRAISE-AI tool in larger systematic reviews with more diverse data sets may yield a
wider range of quality. Second, study citation rates may not be a reliable measure of quality; however,
we attempted to mitigate this limitation by excluding self-citations. Furthermore, APPRAISE-AI was
well-correlated with other validated measures of study quality, such as QUADAS-2 and TRIPOD.
Third, this iteration of APPRAISE-AI is based on current best practices in AI. However, as AI methods
continue to evolve at a rapid pace, this tool may need to be updated to reflect these advancements.
For example, model explainability remains a highly controversial topic among clinical and AI experts,
with no universally accepted method for providing robust explanations for individual-level
predictions.33 Similarly, there is no clear consensus on the best strategy to incorporate algorithmic
fairness considerations34,35; therefore, APPRAISE-AI does not assign scores to any particular
approach. Instead, the emphasis is placed on conducting bias assessments (item 17) so that
researchers can examine the efficacy of their fairness strategies, regardless of the approach used.

It must be emphasized that APPRAISE-AI, like other reporting guidelines, cannot replace clinical
and methodological expertise. For example, even if a study uses an objective, well-captured ground
truth (ie, the highest assigned score for item 6, quality of ground truth), it may not be appropriate for
the specific clinical problem. In addition, even the performance of a very high quality AI model may
degrade over time or when applied to a foreign setting owing to data set and concept drift.36,37 This
issue has been exemplified by the Epic Sepsis Model, which substantially underperformed on
external validation.38 Another consideration is that APPRAISE-AI is not intended to evaluate
feasibility and other ethical considerations that are essential to clinical implementation, such as ease
of use, interoperability, and privacy concerns. Furthermore, APPRAISE-AI is primarily intended for
AI research focused on clinical decision support and may be less applicable for other types of studies,
such as causal inference.

Conclusions

APPRAISE-AI has a broad range of applications for clinicians, researchers, scientific journals, funding
organizations, and regulatory bodies to assess the methodological and reporting quality of clinical
AI research. APPRAISE-AI may further enhance investigator transparency and accountability during
the model development and validation phases. We hope that this tool will empower researchers to
generate higher quality evidence to support their AI studies. We invite the AI community to provide
feedback and suggestions on this iteration of the APPRAISE-AI tool, which is available in a public
repository.
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