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DECE: Decision Explorer with Counterfactual Explanations for
Machine Learning Models

Furui Cheng, Yao Ming, Huamin Qu

Fig. 1. The DECE interface for exploring a machine learning model’s decisions with counterfactual explanations. The user uses
the table view (A) for subgroup level analysis. The table header (A1) supports the exploration of the table with sorting and filtering
operations. The subgroup list (A2) presents the subgroups in rows and summarizes their counterfactual examples. The user can
interactively create, update, and delete a list of subgroups. The instance lens (A3) visualizes each instance in the focused subgroup
as a single thin horizontal line. In the instance view (B), the user can customize (B1) and inspect the diverse counterfactual examples
of a single instance in an enhanced parallel coordinate view (B2).

Abstract— With machine learning models being increasingly applied to various decision-making scenarios, people have spent grow-
ing efforts to make machine learning models more transparent and explainable. Among various explanation techniques, counterfactual
explanations have the advantages of being human-friendly and actionable—a counterfactual explanation tells the user how to gain the
desired prediction with minimal changes to the input. Besides, counterfactual explanations can also serve as efficient probes to the
models’ decisions. In this work, we exploit the potential of counterfactual explanations to understand and explore the behavior of ma-
chine learning models. We design DECE, an interactive visualization system that helps understand and explore a model’s decisions
on individual instances and data subsets, supporting users ranging from decision-subjects to model developers. DECE supports
exploratory analysis of model decisions by combining the strengths of counterfactual explanations at instance- and subgroup-levels.
We also introduce a set of interactions that enable users to customize the generation of counterfactual explanations to find more
actionable ones that can suit their needs. Through three use cases and an expert interview, we demonstrate the effectiveness of
DECE in supporting decision exploration tasks and instance explanations.

Index Terms—Tabular Data, Explainable Machine Learning, Counterfactual Explanation, Decision Making

1 INTRODUCTION

In recent years, we have witnessed an increasing adoption of machine
learning (ML) models to support data-driven decision-making in var-
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ious application domains, which include decisions on loan approvals,
risk assessment for certain diseases, and admissions to various
universities. Due to the complexity of these real-world problems,
well-fitted ML models with good predictive performance often
make decisions via complex pathways, and it is difficult to obtain
human-comprehensible explanations directly from the models. The
lack of interpretability and transparency could result in hidden biases
and potentially harmful actions, which may hinder the real-world
deployment of ML models.

To address this challenge, a variety of post-hoc model explana-
tion techniques have been proposed [6]. Most of the techniques
explain the model’s decisions by calculating feature attributions or
through case-based reasoning. An alternative approach for providing
human-friendly and actionable explanations is to present users with
counterfactuals, or counterfactual explanations [17, 39]. The method

answers this question: How does one obtain an alternative or desirable
prediction by altering the data just a little bit? For instance, a person
submitted a loan request but got rejected by the bank based on the
recommendations made by an ML model. Counterfactuals provide
explanations like “if you had an income of $40 000 rather than $30
000, or a credit score of 700 rather than 600, your loan request would
have been approved.” Counterfactual explanations are user-friendly to
the general public as they do not require prior-knowledge on machine
learning [4]. Another advantage is that counterfactual explanations are
not based on approximation but always give exact predictions by the
model [26]. Watcher et al. summarize the three important scenarios
for decision subjects as understanding the decision, contesting the
(undesired) decision, and providing actionable recommendations
to alter the decision in the future [39]. For model developers,
counterfactual explanations can be used to analyze the decision
boundaries of a model, which can help detect the model’s possible
flaws and biases [42]. For example, if the counterfactual explanations
for loan rejections all require changing, e.g., the gender or race of an
applicant, then the model is potentially biased.

Recently, a variety of techniques have been developed to generate
counterfactual explanations [39]. However, most of the techniques
focus on providing explanations for the prediction of individual in-
stances [42]. To examine the decision boundaries and analyze model
biases, the corresponding technique should be able to provide an
overview of the counterfactual examples generated for a population or
a selected subgroup of the population. Furthermore, in real-world ap-
plications, certain constraints are needed such that the counterfactual
examples generated are feasible solutions in reality. For example, one
may want to limit the range of credit score changes when generating
counterfactual explanations for a loan application approval model.

An interactive visual interface that can support the exploration of
the counterfactual examples to analyze a model’s decision boundaries,
as well as edit the constraints for counterfactual generation, can be ex-
tremely helpful for ML practitioners to probe the model’s behavior and
also for everyday users to obtain more actionable explanations. Our
goal is to develop a visual interface that can help model developers and
model users understand the model’s predictions, diagnose possible
flaws and biases, and gain supporting evidence for decision making.
We focus on ML models for classification tasks on tabular data, which
is one of the most common real-world applications. The proposed
system, Decision Explorer with Counterfactual Explanations (DECE),
supports interactive subgroup creation from the original data-set and
cross-comparison of their counterfactual examples by extending the
familiar tabular data display. This greatly eases the learning curve
for users with basic data analysis skills. More importantly, since
analyzing decision boundaries for models with complex prediction
pathways is a challenging task, we propose a novel approach to help
users interactively discover simple yet effective decision rules by
analyzing counterfactual examples. An example of such a rule is “
Body Mass Index (BMI) below 30 (almost) ensures that the patient
does not have diabetes, no matter how the other attributes of the
patient change.” By searching for the corresponding counterfactual
examples, we can verify the robustness of such rules. To “flip” the
prediction given in this example, the BMI of a diabetic patient must be
above 30. Such rules can be presented to the domain experts to help
validate a model by checking if they align with domain knowledge.
Sometimes new insights are gained from the identified rules.

To summarize, our contributions include:

• DECE, a visualization system that helps model developers and
model users explore and understand the decisions of ML models
through counterfactual explanations.

• A subgroup-level counterfactual explanation method that
supports exploratory analysis and hypothesis refinement using
subgroup counterfactual explanations.

• Three use cases and an expert interview that demonstrate the
effectiveness of our system.

2 RELATED WORK

2.1 Counterfactual Explanation
Counterfactual explanations aim to find a minimal change in data
that “flips” the model’s prediction. They provide actionable guidance
to end-users in a user-friendly way. The use of counterfactual
explanations is supported by the study of social science [23] and
philosophy literature [17, 29].

Wachter et al. [39] first proposed the concept of unconditional coun-
terfactual explanations and a framework to generate counterfactual ex-
planations by solving an optimization problem. With a user-desired
prediction y′ that is different from the predicted label y, a counterfac-
tual example c against the original instance x can be found by solving

argmin
c

max
λ

λ ( fw(c)− y′)2 +d(x,c), (1)

where fw is the model and d(·, ·) is a function that measures the dis-
tance between the counterfactual example x′ to the original instance
x. Ustun et al. [38] further discussed factors that affected the feasi-
bility of counterfactual examples and designed an integer program-
ming tool to generate diverse counterfactuals to linear models. Russell
[31] designed a similar method to support complex data with mixed
value (a contiguous range or a set of discrete special value). Lucic et
al.designed DATE [21] to generate counterfactual examples to non-
differentiable models with a focus on tree ensembles. Mothilal et
al. proposed a quantitative evaluation framework and designed DiCE
[26], a model-agnostic tool to generate diverse counterfactuals. Karimi
et al. [14] proposed a general pipeline by solving a series of satisfia-
bility problems. Most existing work focuses on the generation and
evaluation of the counterfactual explanations [8, 22, 32].

Instead of generating counterfactual explanations, our work
attempts to solve the question of how to convey counterfactual
explanation information to a subgroup using visualization. Another
focus of our work is to design interactions to help users find more
feasible and actionable counterfactual explanations, e.g., with a more
proper distance measurement suggested by Rudin [30].

2.2 Visual Analytics for Explainable Machine Learning
A variety of visual analytics techniques have been developed to make
machine learning models more explainable. Common use cases for
the explainable techniques include understanding, diagnosing, and
evaluating machine learning models. Recent advances have been
summarized in a few surveys and framework papers [20, 11, 34].

Most existing techniques target at providing explainability for
deep neural networks. Liu et al. [19] combined matrix visualization,
clustering, and edge bundling to visualize the neurons of a CNN
image classifier, which helps developers understand and diagnose
CNNs. Alsallakh et al. [3] developed Blocks to identify the sources of
errors of CNN classifiers, which inspired their improvements on CNN
architecture. Strobelt et al. [36] studied the dynamics of the hidden
states of recurrent neural networks (RNN) as applied to text data using
parallel coordinates and heatmaps. Various other work followed this
line of research to explain deep neural networks by examining and
analyzing their internal representations [13, 12, 18, 24, 41, 40, 35].

The common limitation of these techniques is that they are often
model-specific. It is challenging to generalize them to other types
of models that emerge as machine learning research advances. In
our work, we study counterfactual explanations from a visualization
perspective and develop a model-agnostic solution that applies to both
instance- and subgroup-levels.

The idea of model-agnostic explanation was popularized in LIME
[28]. Visualization researchers have also studied this idea in Prospec-
tor [16], RuleMatrix [25], and the What-If Tool [42]. Closely related
to our work, the What-If Tool adopts a perturbation-based method to
help users interactively probe machine learning models. It also offers
the functionality of finding the nearest “counterfactual” data points
with different labels. Our work investigates the general concept of
counterfactuals that are independent of the available dataset. Besides,
we utilize subgroup counterfactuals to study and analyze the decision
boundaries of machine learning models.
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ious application domains, which include decisions on loan approvals,
risk assessment for certain diseases, and admissions to various
universities. Due to the complexity of these real-world problems,
well-fitted ML models with good predictive performance often
make decisions via complex pathways, and it is difficult to obtain
human-comprehensible explanations directly from the models. The
lack of interpretability and transparency could result in hidden biases
and potentially harmful actions, which may hinder the real-world
deployment of ML models.

To address this challenge, a variety of post-hoc model explana-
tion techniques have been proposed [6]. Most of the techniques
explain the model’s decisions by calculating feature attributions or
through case-based reasoning. An alternative approach for providing
human-friendly and actionable explanations is to present users with
counterfactuals, or counterfactual explanations [17, 39]. The method

answers this question: How does one obtain an alternative or desirable
prediction by altering the data just a little bit? For instance, a person
submitted a loan request but got rejected by the bank based on the
recommendations made by an ML model. Counterfactuals provide
explanations like “if you had an income of $40 000 rather than $30
000, or a credit score of 700 rather than 600, your loan request would
have been approved.” Counterfactual explanations are user-friendly to
the general public as they do not require prior-knowledge on machine
learning [4]. Another advantage is that counterfactual explanations are
not based on approximation but always give exact predictions by the
model [26]. Watcher et al. summarize the three important scenarios
for decision subjects as understanding the decision, contesting the
(undesired) decision, and providing actionable recommendations
to alter the decision in the future [39]. For model developers,
counterfactual explanations can be used to analyze the decision
boundaries of a model, which can help detect the model’s possible
flaws and biases [42]. For example, if the counterfactual explanations
for loan rejections all require changing, e.g., the gender or race of an
applicant, then the model is potentially biased.

Recently, a variety of techniques have been developed to generate
counterfactual explanations [39]. However, most of the techniques
focus on providing explanations for the prediction of individual in-
stances [42]. To examine the decision boundaries and analyze model
biases, the corresponding technique should be able to provide an
overview of the counterfactual examples generated for a population or
a selected subgroup of the population. Furthermore, in real-world ap-
plications, certain constraints are needed such that the counterfactual
examples generated are feasible solutions in reality. For example, one
may want to limit the range of credit score changes when generating
counterfactual explanations for a loan application approval model.

An interactive visual interface that can support the exploration of
the counterfactual examples to analyze a model’s decision boundaries,
as well as edit the constraints for counterfactual generation, can be ex-
tremely helpful for ML practitioners to probe the model’s behavior and
also for everyday users to obtain more actionable explanations. Our
goal is to develop a visual interface that can help model developers and
model users understand the model’s predictions, diagnose possible
flaws and biases, and gain supporting evidence for decision making.
We focus on ML models for classification tasks on tabular data, which
is one of the most common real-world applications. The proposed
system, Decision Explorer with Counterfactual Explanations (DECE),
supports interactive subgroup creation from the original data-set and
cross-comparison of their counterfactual examples by extending the
familiar tabular data display. This greatly eases the learning curve
for users with basic data analysis skills. More importantly, since
analyzing decision boundaries for models with complex prediction
pathways is a challenging task, we propose a novel approach to help
users interactively discover simple yet effective decision rules by
analyzing counterfactual examples. An example of such a rule is “
Body Mass Index (BMI) below 30 (almost) ensures that the patient
does not have diabetes, no matter how the other attributes of the
patient change.” By searching for the corresponding counterfactual
examples, we can verify the robustness of such rules. To “flip” the
prediction given in this example, the BMI of a diabetic patient must be
above 30. Such rules can be presented to the domain experts to help
validate a model by checking if they align with domain knowledge.
Sometimes new insights are gained from the identified rules.

To summarize, our contributions include:

• DECE, a visualization system that helps model developers and
model users explore and understand the decisions of ML models
through counterfactual explanations.

• A subgroup-level counterfactual explanation method that
supports exploratory analysis and hypothesis refinement using
subgroup counterfactual explanations.

• Three use cases and an expert interview that demonstrate the
effectiveness of our system.

2 RELATED WORK

2.1 Counterfactual Explanation
Counterfactual explanations aim to find a minimal change in data
that “flips” the model’s prediction. They provide actionable guidance
to end-users in a user-friendly way. The use of counterfactual
explanations is supported by the study of social science [23] and
philosophy literature [17, 29].

Wachter et al. [39] first proposed the concept of unconditional coun-
terfactual explanations and a framework to generate counterfactual ex-
planations by solving an optimization problem. With a user-desired
prediction y′ that is different from the predicted label y, a counterfac-
tual example c against the original instance x can be found by solving

argmin
c

max
λ

λ ( fw(c)− y′)2 +d(x,c), (1)

where fw is the model and d(·, ·) is a function that measures the dis-
tance between the counterfactual example x′ to the original instance
x. Ustun et al. [38] further discussed factors that affected the feasi-
bility of counterfactual examples and designed an integer program-
ming tool to generate diverse counterfactuals to linear models. Russell
[31] designed a similar method to support complex data with mixed
value (a contiguous range or a set of discrete special value). Lucic et
al.designed DATE [21] to generate counterfactual examples to non-
differentiable models with a focus on tree ensembles. Mothilal et
al. proposed a quantitative evaluation framework and designed DiCE
[26], a model-agnostic tool to generate diverse counterfactuals. Karimi
et al. [14] proposed a general pipeline by solving a series of satisfia-
bility problems. Most existing work focuses on the generation and
evaluation of the counterfactual explanations [8, 22, 32].

Instead of generating counterfactual explanations, our work
attempts to solve the question of how to convey counterfactual
explanation information to a subgroup using visualization. Another
focus of our work is to design interactions to help users find more
feasible and actionable counterfactual explanations, e.g., with a more
proper distance measurement suggested by Rudin [30].

2.2 Visual Analytics for Explainable Machine Learning
A variety of visual analytics techniques have been developed to make
machine learning models more explainable. Common use cases for
the explainable techniques include understanding, diagnosing, and
evaluating machine learning models. Recent advances have been
summarized in a few surveys and framework papers [20, 11, 34].

Most existing techniques target at providing explainability for
deep neural networks. Liu et al. [19] combined matrix visualization,
clustering, and edge bundling to visualize the neurons of a CNN
image classifier, which helps developers understand and diagnose
CNNs. Alsallakh et al. [3] developed Blocks to identify the sources of
errors of CNN classifiers, which inspired their improvements on CNN
architecture. Strobelt et al. [36] studied the dynamics of the hidden
states of recurrent neural networks (RNN) as applied to text data using
parallel coordinates and heatmaps. Various other work followed this
line of research to explain deep neural networks by examining and
analyzing their internal representations [13, 12, 18, 24, 41, 40, 35].

The common limitation of these techniques is that they are often
model-specific. It is challenging to generalize them to other types
of models that emerge as machine learning research advances. In
our work, we study counterfactual explanations from a visualization
perspective and develop a model-agnostic solution that applies to both
instance- and subgroup-levels.

The idea of model-agnostic explanation was popularized in LIME
[28]. Visualization researchers have also studied this idea in Prospec-
tor [16], RuleMatrix [25], and the What-If Tool [42]. Closely related
to our work, the What-If Tool adopts a perturbation-based method to
help users interactively probe machine learning models. It also offers
the functionality of finding the nearest “counterfactual” data points
with different labels. Our work investigates the general concept of
counterfactuals that are independent of the available dataset. Besides,
we utilize subgroup counterfactuals to study and analyze the decision
boundaries of machine learning models.
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3 DESIGN REQUIREMENTS

Our goal is to develop a generic counterfactual-based model explana-
tion tool that helps users get actionable explanations and understand
model behavior. For general users like decision subjects, counterfac-
tual examples can help them understand how to improve their profile to
get the desired outcome. For users like model developers or decision-
makers, we aim to provide counterfactual explanations that can be gen-
eralized for a certain group of instances. To reach our goal, we first
survey design studies for explainable machine learning to understand
general user needs [2, 10, 13, 15, 16, 19, 25, 34, 36, 42]. Then we ana-
lyze these user needs considering the characteristics of counterfactual
explanations and identify two key levels of user interests that relate to
counterfactuals: instance-level and subgroup-level explanations.

Instead of understanding how the model works globally, deci-
sion subjects are more interested in knowing how a prediction is
made based on an individual instance, like their profile. This makes
instance-level explanations more essential for decision subjects. At
the instance-level, we aim to empower users with the ability to:

R1 Examine the diverse counterfactuals to an instance. Access-
ing an explanation of the model’s prediction on a specific in-
stance is a fundamental need. To be more actionable, it is often
helpful to provide several counterfactuals that cover a diverse
range of conditions than a single closest one [39]. The user
should also be able to examine and compare them in an efficient
manner. The user can examine the different options and choose
the best one based on individual needs.

R2 Customize the counterfactuals with user-preferences. Provid-
ing multiple counterfactuals and hoping that one of them matches
user needs may not always work. In some situations, it is better
to allow users to directly specify preferences or constraints on
the type of counterfactuals they need. For example, one home
buyer may prefer a larger house, while another buyer only cares
about the location and neighborhood.

Similar to the “eyes beat memory” principle, it is hard to view and
memorize multiple instance-level explanations and derive an overall
understanding of the model. Explaining machine learning models at
a higher level than an instance can help users understand the general
behavior of the model [13, 25]. One of our major goals is to enable
subgroup-level analysis based on counterfactuals. Subgroup analysis
of the counterfactuals is crucial for users like model developers and
policy-makers, who need an overall comprehension of the model and
the underlying dataset. A subgroup also provides a flexible scope that
allows iterative and comparative analysis of model behavior. At the
subgroup-level, we aim to provide users the ability to:

R3 Select and refine a data subgroup of interest. To conduct
subgroup analysis using counterfactual explanations, the users
should first be equipped with tools to select and refine subgroups.
Interesting subgroups could be those formed from users’ prior
knowledge or those that could suggest hypotheses for describing
the model. For instance, a high glucose level is often considered
a strong sign of diabetes. The user (patient or doctor) may be
interested in a subgroup consisting of low glucose-level patients
labeled as healthy, and see if most of their counterfactual exam-
ples (patients with diabetes) have high glucose levels. However,
drilling down to a proper subgroup (i.e., an appropriate glucose-
level range) is not easy. Providing essential tools to create and
iteratively refine subgroups could largely benefit users’ explo-
ration processes.

R4 Summarize the counterfactual examples of a subgroup of in-
stances. With a subgroup of instances, we are interested in the
distribution of their counterfactual examples. Do they share sim-
ilar counterfactual examples? Are there any counterfactual ex-
amples that lie inside the subgroup? An educator would be in-
terested in knowing if the performance of a certain group of stu-
dents can be improved with a single action. It is also useful for
model developers to form and verify their hypothesis by investi-
gating a general prediction pattern over a subgroup.

R5 Compare the counterfactual examples of different sub-
groups. Comparative analysis across different groups could lead
to deeper understanding. It is also an intuitive way to reveal po-
tential biases in the model. For instance, to achieve the same de-
sired annual income, do different genders or ethnic groups need
to take different actions? Comparison can provide evidence for
progressive refinement of subgroups, helping users to identify a
salient subgroup that has the same predicted outcome.

4 COUNTERFACTUAL EXPLANATION

In this section, we first introduce the techniques and algorithms that
we use to generate diverse actionable explanations with customized
constraints (R1, R2). Subsequently, we propose the definition of rule
support counterfactual examples, which is designed to support explor-
ing a model’s subgroup-level behaviours (R3, R4, R5).

4.1 Generating Counterfactual Examples
As introduced in Sect. 2.1, given a black box model f : X → Y , the
problem of generating counterfactual explanations to an instance x is
to find a set of examples {c1,c2, ...,ck} that lead to a desired prediction
y′, which are also called counterfactual examples (CF examples). The
CF examples can suggest how a decision subject could act to achieve
the user’s targets. The problem we address in this section is how to
generate CF examples that are valid and actionable.

CF examples are actionable when they appropriately consider prox-
imity, diversity, and sparsity. First, the generated examples should be
proximal to the original instance, which means only a small change
has to be made to the user’s current situation. However, one predefined
distance metric cannot fit every need because people may have differ-
ent preferences or constraints [31]. Thus, we want to offer diverse
options (R1) to choose from and also allow them to add constraints
(R2) to reflect their preferences or narrow their searches. Finally, to
enhance the interpretability of the examples, we want the examples to
be sparse, which means that only a few features need to be changed.

We follow the framework of DiCE [26] and design an algorithm
to generate both valid and actionable CF examples using three proce-
dures. First, we generate raw CF examples by considering their va-
lidity, proximity, and diversity. To make the trade-off between these
three properties, we optimize a three-part loss function as

L = Lvalid +λ1Ldist +λ2Ldiv. (2)

Validity. The validity term Lvalid ensures the generated CF exam-
ples reach the desired prediction target. We define it as:

Lvalid =
k

∑
i=1

loss( f (ci),y′),

in which the loss is a metric to measure the distance between the target
y′ and the prediction of each CF example f (ci). For classification
tasks, we only require that the prediction flips, and high confidence or
possibility of the prediction result is not necessary. Thus, instead of
choosing the commonly used L1 or L2 loss, we let loss be the ranking
loss with zero margins. In a binary classification task, the loss function
is loss(ypred ,y′) =max(0,−y′ ∗(ypred −0.5)), in which the target y′ =
±1, and ypred is the prediction of the CF example by the model f (c),
which is normalized to [0,1].

Proximity. As suggested by the proximity requirement, we want
the CF examples to be close to the original instance by minimizing
Ldist in the loss function. We define the proximity loss as the sum of
the distance from the CF examples to the original instance:

Ldist =
k

∑
i=1

dist(ci,x).

We choose a weighted Heterogeneous Manhattan-Overlay Metric
(HMOM) [43] to calculate the distance as follows:

dist(c,x) = ∑
f∈F

d f (c f ,x f ), (3)

where

d f (c f ,x f ) =

{
|c f −x f |

(1+MAD f )·range f
if f indexes a continuous feature

1(c f �= x f ) if f indexes a categorical feature
.

For continuous features, we apply a normalized Manhattan distance
metric weighted by 1/(1+MAD f ) as suggested by Watcher et al. [39],
where MAD f is the median absolute deviation (MAD) value of the fea-
ture f . By applying this weight, we encourage the feature values with
large variation to change while the rest stay close to the original val-
ues. For categorical features, we apply an overlap metric 1(c f �= x f ),
which is 1 when c f �= x f and 0 when c f = x f .

Diversity. To achieve diversity, we encourage the generated exam-
ples to be separated from each other. Specifically, we calculate the
pairwise distance of a set of CF examples and minimize:

Ldiv =−1
k

k

∑
i=1

k

∑
j=i

dist(ci,c j),

where the distance metric is defined in Equation 3.
To solve the above optimization problem, we could use any

gradient-based optimizers. For simplicity, we use the classic stochas-
tic gradient descent (SGD) in this work. As discussed in R2, we want
to allow users to specify their preferences by adding constraints in the
generation process. The constraints decide if and within what range
a feature value should change. To fix the immutable feature values,
we update them with a masked gradient, i.e., the gradient to the im-
mutable feature values is set to 0. We also run a clip operation every K
iteration to project the feature values to a feasible value in the range.

Sparsity. The sparsity requirement suggests that only a few fea-
ture values should change. To enhance the sparsity of the generated
CF examples, we apply a feature selection procedure. We first gen-
erate raw CF examples from the previous procedure. Then we select
the top-k features for each CF example separately with the normalized
maximum value changes weighted by 1/(1+MAD f ). At last, we re-
peat the above optimization procedure with only these k features by
masking the gradient of other features. The generated CF examples
are sparse with at most k changed feature values.

Post-hoc validity. In previous procedures, we treat the value of
each continuous feature as a real number. However, in a real-world
dataset, features may be integers or have certain precisions. For exam-
ple, a patient’s number of pregnancies should be an integer, and a value
with decimals for this feature can bring confusion to users. Thus, we
project each CF example ci to a meaningful one c̃i. Let the validity
of projected CF examples, c̃i, exist as post-hoc validity. We design a
post-hoc process as the third procedure to improve the post-hoc valid-
ity by refining the projected CF examples.

In each step of the process, we calculate the gradient of each fea-
ture to the loss L (Equation 2), gradi = ∇c̃i loss(c̃i,x), and update the
projected CF example by updating the feature value with the largest
absolute normalized gradient value j = argmax f∈F (|grad f

i |):

c̃ j
i,t+1 = c̃ j

i,t +max(p j, ε|grad j
i |) sign(grad j

i ), (4)

where p j notes the unit of the feature j and ε is a given hyper-
parameter, which usually equals the learning rate in the SGD process
above. The process ends when the updated CF example is valid, or the
number of steps reaches a maximum number, which is often set as the
number of features.

4.2 Rule Support Counterfactual Examples
We first propose a subgroup-level exploratory analysis procedure for
understanding a model’s local behavior. Then we introduce the defini-
tion of rule support counterfactual examples (r-counterfactuals), which
is designed to support such an exploratory analysis procedure.

One of the major goals of exploratory analysis is to suggest and
assess hypotheses [37]. The exploration starts with a hypothesis about
the model’s prediction on a subgroup proposed by users. A hypothesis

Fig. 2. A simple exploratory analysis with r-counterfactuals. A. A hy-
pothesis is proposed by selecting a subgroup. B. R-counterfactuals are
generated against the subgroup. are instances within the subgroup,
and are instances outside the subgroup. C. The hypothesis is refined
to a new subgroup that excludes the previous CF examples.

is an assertion in the form of an if-else rule that describes a model’s
prediction, e.g., “People who are under 30 years old and whose BMI is
under 35 will be predicted healthy by the diabetes prediction model.”
No matter how the other features change (e.g., smoking or not), as long
as the two conditions (under 30 years old with BMI under 35) hold,
the person is unlikely to have diabetes. Each hypothesis describes the
model’s behavior on a subgroup defined by range constraints on a set
of features (Fig. 2A):

S = D∩ I′1 × I′2 × ...× I′k, (5)

where D is the dataset and I′j defines the value range of feature j. The
value range is a continuous interval for continuous features, and a set
of selectable categories for categorical features.

The users expect to find out whether the model’s prediction on the
collected data conforms to the hypothesis and, more importantly, if the
hypothesis generalizes in unseen instances. CF examples can be used
to answer the two questions. Intuition suggests that if we can find a
feasible CF example against one of the instances in the subgroup, the
hypothesis might not be valid. For example, if we can find a person
whose prediction for having diabetes can be flipped to positive but age
< 30 and BMI < 35, the hypothesis that “people under 30 years old
with BMI under 35 will be predicted healthy” does not hold. Other-
wise, the hypothesis is supported by the CF examples.

For an invalid hypothesis, CF examples also suggest how to refine
it. For example, if a CF example tells that “a 29-year-old smoker
whose BMI is 30 is predicted as diabetic”, it suggests that the user may
narrow the subgroup to age< 30 and BMI < 30 or refer to other feature
values (e.g., smoking ∈ {no}). With multiple rounds of hypothesis,
users can understand the model’s prediction on a subgroup of interest.

In our initial approaches, we find that unconstrained CF exam-
ples would overwhelm users due to the complex interplay of mul-
tiple features. Thus, we simplify the problem by only focusing on
one feature at a time. This is achieved by generating a group of con-
strained CF examples called rule support counterfactual examples (r-
counterfactuals). These are counterfactuals that support a rule. Specif-
ically, with a given subgroup, we generate CF examples by only allow-
ing the value of one feature j to change in the domain Xj . In contrast,
other feature values can only vary in the limited range, I′j . For each
feature j, we generate r-counterfactuals (Fig. 2B) by solving:

r-counterfactuals j : argmin
{ci}

∑
xi∈S

L(xi,ci), (6)

such that: ci ∈ I′1 × I′2 × ...×Xj × I′n, (7)

where the L is the loss function defined as in Equation 2. We generate
multiple r-counterfactuals for each feature to analyze their effects on
the model’s predictions to the subgroup. To speed up the generation of
CF examples, we adapt the minibatch method.

As such, we are able to support the exploratory procedure for re-
fining hypotheses. If, in all r-counterfactuals groups, every CF ex-
ample falls outside the feature ranges, the robustness of this claim is
supported by even potentially unseen examples—even when we inten-
tionally seek negative examples that could invalidate the hypothesis,
it is not possible to do so. Otherwise, users may refine or reject the
hypothesis as suggested by the r-counterfactuals groups (Fig. 2C).
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3 DESIGN REQUIREMENTS

Our goal is to develop a generic counterfactual-based model explana-
tion tool that helps users get actionable explanations and understand
model behavior. For general users like decision subjects, counterfac-
tual examples can help them understand how to improve their profile to
get the desired outcome. For users like model developers or decision-
makers, we aim to provide counterfactual explanations that can be gen-
eralized for a certain group of instances. To reach our goal, we first
survey design studies for explainable machine learning to understand
general user needs [2, 10, 13, 15, 16, 19, 25, 34, 36, 42]. Then we ana-
lyze these user needs considering the characteristics of counterfactual
explanations and identify two key levels of user interests that relate to
counterfactuals: instance-level and subgroup-level explanations.

Instead of understanding how the model works globally, deci-
sion subjects are more interested in knowing how a prediction is
made based on an individual instance, like their profile. This makes
instance-level explanations more essential for decision subjects. At
the instance-level, we aim to empower users with the ability to:

R1 Examine the diverse counterfactuals to an instance. Access-
ing an explanation of the model’s prediction on a specific in-
stance is a fundamental need. To be more actionable, it is often
helpful to provide several counterfactuals that cover a diverse
range of conditions than a single closest one [39]. The user
should also be able to examine and compare them in an efficient
manner. The user can examine the different options and choose
the best one based on individual needs.

R2 Customize the counterfactuals with user-preferences. Provid-
ing multiple counterfactuals and hoping that one of them matches
user needs may not always work. In some situations, it is better
to allow users to directly specify preferences or constraints on
the type of counterfactuals they need. For example, one home
buyer may prefer a larger house, while another buyer only cares
about the location and neighborhood.

Similar to the “eyes beat memory” principle, it is hard to view and
memorize multiple instance-level explanations and derive an overall
understanding of the model. Explaining machine learning models at
a higher level than an instance can help users understand the general
behavior of the model [13, 25]. One of our major goals is to enable
subgroup-level analysis based on counterfactuals. Subgroup analysis
of the counterfactuals is crucial for users like model developers and
policy-makers, who need an overall comprehension of the model and
the underlying dataset. A subgroup also provides a flexible scope that
allows iterative and comparative analysis of model behavior. At the
subgroup-level, we aim to provide users the ability to:

R3 Select and refine a data subgroup of interest. To conduct
subgroup analysis using counterfactual explanations, the users
should first be equipped with tools to select and refine subgroups.
Interesting subgroups could be those formed from users’ prior
knowledge or those that could suggest hypotheses for describing
the model. For instance, a high glucose level is often considered
a strong sign of diabetes. The user (patient or doctor) may be
interested in a subgroup consisting of low glucose-level patients
labeled as healthy, and see if most of their counterfactual exam-
ples (patients with diabetes) have high glucose levels. However,
drilling down to a proper subgroup (i.e., an appropriate glucose-
level range) is not easy. Providing essential tools to create and
iteratively refine subgroups could largely benefit users’ explo-
ration processes.

R4 Summarize the counterfactual examples of a subgroup of in-
stances. With a subgroup of instances, we are interested in the
distribution of their counterfactual examples. Do they share sim-
ilar counterfactual examples? Are there any counterfactual ex-
amples that lie inside the subgroup? An educator would be in-
terested in knowing if the performance of a certain group of stu-
dents can be improved with a single action. It is also useful for
model developers to form and verify their hypothesis by investi-
gating a general prediction pattern over a subgroup.

R5 Compare the counterfactual examples of different sub-
groups. Comparative analysis across different groups could lead
to deeper understanding. It is also an intuitive way to reveal po-
tential biases in the model. For instance, to achieve the same de-
sired annual income, do different genders or ethnic groups need
to take different actions? Comparison can provide evidence for
progressive refinement of subgroups, helping users to identify a
salient subgroup that has the same predicted outcome.

4 COUNTERFACTUAL EXPLANATION

In this section, we first introduce the techniques and algorithms that
we use to generate diverse actionable explanations with customized
constraints (R1, R2). Subsequently, we propose the definition of rule
support counterfactual examples, which is designed to support explor-
ing a model’s subgroup-level behaviours (R3, R4, R5).

4.1 Generating Counterfactual Examples
As introduced in Sect. 2.1, given a black box model f : X → Y , the
problem of generating counterfactual explanations to an instance x is
to find a set of examples {c1,c2, ...,ck} that lead to a desired prediction
y′, which are also called counterfactual examples (CF examples). The
CF examples can suggest how a decision subject could act to achieve
the user’s targets. The problem we address in this section is how to
generate CF examples that are valid and actionable.

CF examples are actionable when they appropriately consider prox-
imity, diversity, and sparsity. First, the generated examples should be
proximal to the original instance, which means only a small change
has to be made to the user’s current situation. However, one predefined
distance metric cannot fit every need because people may have differ-
ent preferences or constraints [31]. Thus, we want to offer diverse
options (R1) to choose from and also allow them to add constraints
(R2) to reflect their preferences or narrow their searches. Finally, to
enhance the interpretability of the examples, we want the examples to
be sparse, which means that only a few features need to be changed.

We follow the framework of DiCE [26] and design an algorithm
to generate both valid and actionable CF examples using three proce-
dures. First, we generate raw CF examples by considering their va-
lidity, proximity, and diversity. To make the trade-off between these
three properties, we optimize a three-part loss function as

L = Lvalid +λ1Ldist +λ2Ldiv. (2)

Validity. The validity term Lvalid ensures the generated CF exam-
ples reach the desired prediction target. We define it as:

Lvalid =
k

∑
i=1

loss( f (ci),y′),

in which the loss is a metric to measure the distance between the target
y′ and the prediction of each CF example f (ci). For classification
tasks, we only require that the prediction flips, and high confidence or
possibility of the prediction result is not necessary. Thus, instead of
choosing the commonly used L1 or L2 loss, we let loss be the ranking
loss with zero margins. In a binary classification task, the loss function
is loss(ypred ,y′) =max(0,−y′ ∗(ypred −0.5)), in which the target y′ =
±1, and ypred is the prediction of the CF example by the model f (c),
which is normalized to [0,1].

Proximity. As suggested by the proximity requirement, we want
the CF examples to be close to the original instance by minimizing
Ldist in the loss function. We define the proximity loss as the sum of
the distance from the CF examples to the original instance:

Ldist =
k

∑
i=1

dist(ci,x).

We choose a weighted Heterogeneous Manhattan-Overlay Metric
(HMOM) [43] to calculate the distance as follows:

dist(c,x) = ∑
f∈F

d f (c f ,x f ), (3)

where

d f (c f ,x f ) =

{
|c f −x f |

(1+MAD f )·range f
if f indexes a continuous feature

1(c f �= x f ) if f indexes a categorical feature
.

For continuous features, we apply a normalized Manhattan distance
metric weighted by 1/(1+MAD f ) as suggested by Watcher et al. [39],
where MAD f is the median absolute deviation (MAD) value of the fea-
ture f . By applying this weight, we encourage the feature values with
large variation to change while the rest stay close to the original val-
ues. For categorical features, we apply an overlap metric 1(c f �= x f ),
which is 1 when c f �= x f and 0 when c f = x f .

Diversity. To achieve diversity, we encourage the generated exam-
ples to be separated from each other. Specifically, we calculate the
pairwise distance of a set of CF examples and minimize:

Ldiv =−1
k

k

∑
i=1

k

∑
j=i

dist(ci,c j),

where the distance metric is defined in Equation 3.
To solve the above optimization problem, we could use any

gradient-based optimizers. For simplicity, we use the classic stochas-
tic gradient descent (SGD) in this work. As discussed in R2, we want
to allow users to specify their preferences by adding constraints in the
generation process. The constraints decide if and within what range
a feature value should change. To fix the immutable feature values,
we update them with a masked gradient, i.e., the gradient to the im-
mutable feature values is set to 0. We also run a clip operation every K
iteration to project the feature values to a feasible value in the range.

Sparsity. The sparsity requirement suggests that only a few fea-
ture values should change. To enhance the sparsity of the generated
CF examples, we apply a feature selection procedure. We first gen-
erate raw CF examples from the previous procedure. Then we select
the top-k features for each CF example separately with the normalized
maximum value changes weighted by 1/(1+MAD f ). At last, we re-
peat the above optimization procedure with only these k features by
masking the gradient of other features. The generated CF examples
are sparse with at most k changed feature values.

Post-hoc validity. In previous procedures, we treat the value of
each continuous feature as a real number. However, in a real-world
dataset, features may be integers or have certain precisions. For exam-
ple, a patient’s number of pregnancies should be an integer, and a value
with decimals for this feature can bring confusion to users. Thus, we
project each CF example ci to a meaningful one c̃i. Let the validity
of projected CF examples, c̃i, exist as post-hoc validity. We design a
post-hoc process as the third procedure to improve the post-hoc valid-
ity by refining the projected CF examples.

In each step of the process, we calculate the gradient of each fea-
ture to the loss L (Equation 2), gradi = ∇c̃i loss(c̃i,x), and update the
projected CF example by updating the feature value with the largest
absolute normalized gradient value j = argmax f∈F (|grad f

i |):

c̃ j
i,t+1 = c̃ j

i,t +max(p j, ε|grad j
i |) sign(grad j

i ), (4)

where p j notes the unit of the feature j and ε is a given hyper-
parameter, which usually equals the learning rate in the SGD process
above. The process ends when the updated CF example is valid, or the
number of steps reaches a maximum number, which is often set as the
number of features.

4.2 Rule Support Counterfactual Examples
We first propose a subgroup-level exploratory analysis procedure for
understanding a model’s local behavior. Then we introduce the defini-
tion of rule support counterfactual examples (r-counterfactuals), which
is designed to support such an exploratory analysis procedure.

One of the major goals of exploratory analysis is to suggest and
assess hypotheses [37]. The exploration starts with a hypothesis about
the model’s prediction on a subgroup proposed by users. A hypothesis

Fig. 2. A simple exploratory analysis with r-counterfactuals. A. A hy-
pothesis is proposed by selecting a subgroup. B. R-counterfactuals are
generated against the subgroup. are instances within the subgroup,
and are instances outside the subgroup. C. The hypothesis is refined
to a new subgroup that excludes the previous CF examples.

is an assertion in the form of an if-else rule that describes a model’s
prediction, e.g., “People who are under 30 years old and whose BMI is
under 35 will be predicted healthy by the diabetes prediction model.”
No matter how the other features change (e.g., smoking or not), as long
as the two conditions (under 30 years old with BMI under 35) hold,
the person is unlikely to have diabetes. Each hypothesis describes the
model’s behavior on a subgroup defined by range constraints on a set
of features (Fig. 2A):

S = D∩ I′1 × I′2 × ...× I′k, (5)

where D is the dataset and I′j defines the value range of feature j. The
value range is a continuous interval for continuous features, and a set
of selectable categories for categorical features.

The users expect to find out whether the model’s prediction on the
collected data conforms to the hypothesis and, more importantly, if the
hypothesis generalizes in unseen instances. CF examples can be used
to answer the two questions. Intuition suggests that if we can find a
feasible CF example against one of the instances in the subgroup, the
hypothesis might not be valid. For example, if we can find a person
whose prediction for having diabetes can be flipped to positive but age
< 30 and BMI < 35, the hypothesis that “people under 30 years old
with BMI under 35 will be predicted healthy” does not hold. Other-
wise, the hypothesis is supported by the CF examples.

For an invalid hypothesis, CF examples also suggest how to refine
it. For example, if a CF example tells that “a 29-year-old smoker
whose BMI is 30 is predicted as diabetic”, it suggests that the user may
narrow the subgroup to age< 30 and BMI < 30 or refer to other feature
values (e.g., smoking ∈ {no}). With multiple rounds of hypothesis,
users can understand the model’s prediction on a subgroup of interest.

In our initial approaches, we find that unconstrained CF exam-
ples would overwhelm users due to the complex interplay of mul-
tiple features. Thus, we simplify the problem by only focusing on
one feature at a time. This is achieved by generating a group of con-
strained CF examples called rule support counterfactual examples (r-
counterfactuals). These are counterfactuals that support a rule. Specif-
ically, with a given subgroup, we generate CF examples by only allow-
ing the value of one feature j to change in the domain Xj . In contrast,
other feature values can only vary in the limited range, I′j . For each
feature j, we generate r-counterfactuals (Fig. 2B) by solving:

r-counterfactuals j : argmin
{ci}

∑
xi∈S

L(xi,ci), (6)

such that: ci ∈ I′1 × I′2 × ...×Xj × I′n, (7)

where the L is the loss function defined as in Equation 2. We generate
multiple r-counterfactuals for each feature to analyze their effects on
the model’s predictions to the subgroup. To speed up the generation of
CF examples, we adapt the minibatch method.

As such, we are able to support the exploratory procedure for re-
fining hypotheses. If, in all r-counterfactuals groups, every CF ex-
ample falls outside the feature ranges, the robustness of this claim is
supported by even potentially unseen examples—even when we inten-
tionally seek negative examples that could invalidate the hypothesis,
it is not possible to do so. Otherwise, users may refine or reject the
hypothesis as suggested by the r-counterfactuals groups (Fig. 2C).
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Fig. 3. DECE consists of a Data Storage module, a CF Engine module,
and a Visual Analysis module. In the Visual Analysis module, the
table view and instance view together support an exploratory analysis
workflow.

5 DECE
In this section, we first introduce the architecture and workflow of
DECE. Then we describe the design choices in the two main system
interface components: table view and instance view.

5.1 Overview
As a decision exploration tool for machine learning models, DECE is
designed as a sever-client application. To make the system extensible
with different models and counterfactual explanation algorithms, we
design DECE with three major components: the Data Storage module,
the CF Engine module, and the Visual Analysis module. The former
two are integrated into a web-server implemented using Python with
Flask, and the last one is implemented with React and D3.

The Data Storage module provides configuration options so ad-
vanced users can easily supply their own classification models and
datasets. The CF Engine implements a set of algorithms for generating
CF examples with fully customizable constraints. It also implements
the procedure for producing subgroup-level CF examples (as described
in Sect. 4.2). The Visual Analysis module consists of an instance view
and a table view. The instance view allows a user to customize and
inspect the CF examples of a single instance of interest (R1, R2). The
table view presents a summary of the instances of the dataset and their
CF examples (R4). It allows subgroup-level analysis through easy
subgroup creation (R3) and counterfactual comparisons (R5).

The instance view and table view complement each other as a
whole in supporting the exploratory analysis of model decisions. As
shown in Fig. 3, by exploring the diverse CF examples of specific
instances in the instance view, users can spot potentially interesting
counterfactual phenomena and suggest related hypotheses. With
hypotheses in mind, either formulated through exploration or prior
experiences, users can utilize the r-counterfactuals integrated into the
table view to assessing plausibility. After refining a hypothesis, users
can then verify or reject it by attempting to validate the corresponding
instances in the instance view.

5.2 Visualization of Subgroup with R-counterfactuals
Verifying and refining the hypothesis on the model’s subgroup-level
behaviors is the most critical and challenging part of the exploratory
analysis procedure. We focus on one feature at a time and refine the
hypothesis achieved with r-counterfactuals (described in Sect. 4.2).
For each r-counterfactuals group, we use a set of hybrid visualiza-
tion to summarize and compare the r-counterfactuals and original
subgroup’s instance value on each focusing feature.

Visualize Distribution (R4). To summarize an r-counterfactuals
group, we use two side-by-side histograms to visualize the distribu-
tions of the original group and counterfactuals group (Fig. 4A). The
color of the bars indicates the prediction class. Sometimes, the system
cannot find valid CF examples, which indicates that the prediction for
these instances can hardly be altered by changing their feature values
with the constraints hold. In this case, we use grey bars to indicate
their number and stack them on the colored bar. The two histograms
are aligned horizontally, with the upper one referring to the original

Fig. 4. Design choices for visualizing subgroup with r-counterfactuals.
A-C. Our final choices. D. A matrix-based alternative design to visual-
ize instance-cf connections. E. A density-based alternative design to
visualize the distribution of the information gain.

data and the bottom one referring to the counterfactuals group. For
continuous features, a shadow box with two handles is drawn to show
the range of the subgroup’s feature value. To provide a visual hint for
the quality of the subgroup, we use the color intensity of the box to
signify the Gini impurity of data in this range. When users select a
subgroup containing instances all predicted as positive, a darker color
indicates that (negative) CF examples can be easily found within this
subgroup. In this case, the hypothesis might not be favorable and needs
to be refined or rejected. For categorical features, we use bar charts
instead. Triangle marks are used to indicate the selected categories.

Visualize Connection. CF examples are paired with original
instances. The pairing information between the two groups can help
users understand how the original instances need to change to flip
their predictions. In another sense, it also helps to understand how
the local decision boundary can be approximated [26]. Intuition hints
that the feature with a larger change is likely to be a more important
one. The magnitude of the changes also indicates how difficult the
subgroup predictions are to flip by modifying that feature. We use a
Sankey diagram to display the flow from original group bins (as input
bins) to counterfactual group bins (as output bins) (Fig. 4B). For each
link, the opacity encodes the flow amount while the width encodes the
relative flow amount to the input bin size. An alternative design is the
use of a matrix to visualize the flow between the bins (Fig. 4D). Each
cell in the matrix represents the number of instance-CF pairs that fail
in the corresponding bins. However, in practice, the links are quite
sparse. Thus, compared with the matrix, the Sankey diagram saves
much space and also emphasizes the major changes of CF from the
original value, so we choose the Sankey diagram as our final design.

Refine Subgroup (R3). As we have discussed in Sect. 4.2, a major
task during the exploration is to assess and refine the hypothesis.
What is a plausible hypothesis represented by a subgroup? A general
guideline is: a subgroup is likely to be a good one if it separates
instances with different prediction classes. The intuition is that if a
boundary can be found to separate the instances, the refined hypoth-
esis is likely to be valid. We choose the information gain based on
Gini impurity to indicate a good splitting point, which is widely used
in decision tree algorithms [5]. The information gain is computed as
1− (Nle f t/N) · IG(Dle f t)− (Nright/N) · IG(Dright), where Dle f t ,Dright
are the data including both original instances and CF examples, split
into the left set or the right set. At first, we try to visualize the infor-
mation gain in a heatmap lie between the two histograms (Fig. 4E).
Though such design has the advantage of not requiring extra space, we
find that it is hard to distinguish the splitting point with the maximum
information gain from the heat map. To make the visual hint salient,
we visualize the impurity scores as a small Sparkline under the his-
tograms. We use color and height to double encode this information.
For continuous features, we enable users to refine the hypothesis by
dragging the handles to a new range. And for categorical features,
users are allowed to click the bars to update the selected categories.

5.3 Table View
The table view (Fig.1A) is a major component and entry point of
DECE. Organized as a table, this view summarizes the subgroups with
their r-counterfactuals as well as the details of instances in a focused
subgroup. Vertically, the table view consists of three parts. From top
to bottom, they are the table header, the subgroup list, and the instance
lens. The table header is a navigator to help users explore the data in
the rest of the table. The subgroup list shows a summary of multiple
groups, while the instance lens shows details for a specific subgroup.
The three components are aligned horizontally with multiple columns,
each corresponding to a feature in the dataset. The first column, as an
exception, shows the label and prediction information. Next, we ex-
plain the three parts and interactions that enable them to work together.

Table Header. The table header (Fig.1A1) presents the overall
data distribution of the features in a set of linked histograms/bar
charts. The first column shows the predictions of the instances in
a stacked bar chart, where each bar represents a prediction class.
Users can click a bar to focus on a specific class. We indicate false
predictions by a hatched bar area and true predictions by a solid bar
area. In each feature column, we also use two histograms/bar charts
(introduced in Sect. 5.2) to visualize the distribution of the instances
and CF examples. Users can efficiently explore the data and their
CF examples via filtering and sorting. For each feature, filtering
is supported by brushing (for continuous features) or clicking (for
categorical features) on both histograms/bar charts. After filtering,
that data is highlighted in the histograms while the rest is represented
as translucent bars. To sort, users can click on the up/down buttons
that pop-up when hovering on each feature.

Subgroup List. The subgroup list (Fig.1A2) allows users to cre-
ate, refine, and compare different subgroups. Here, each row corre-
sponds to a subgroup. The first column presents the predictions of
the instances in the same design used in the table header. In other
columns, each cell (i, j) presents a summary of the subgroup i with
r-counterfactuals for the feature j (introduced in Sect. 5.2). The sub-
group list is initialed with one default group, which is the whole dataset
with unconstrained CF examples. Starting with this group, users can
refine the group by changing ranges for each feature and clicking the
update button. The users can also copy or delete an unwanted sub-
group to maintain the subgroup list, which helps track explorations
history. By aligning different subgroups together, users can gain in-
sights from a side-by-side comparison (R5).

Instance Lens. When users click a cell in the subgroup list, the
instance lens (Fig.1A3) presents details pertaining to each instance
and CF examples. To ensure the scalability to a large group of
instances, we design an instance lens based on Table Lens [27], a
technique for visualizing large tables. In the instance lens, we design
two types of cells: row-focal and non-focal cells with different visual
representations. A CF example shows minimal changes from the
original instance. For numerical features, we use a line segment to
show how the change is made. The x-position of the two endpoints
encodes the feature value of the original instance and the CF example.
The endpoint corresponding to the original instance is marked black.
We use green and red to indicate a positive or negative change. For
categorical features, we use two broad line segments to indicate
the category of the original instance (in a deeper color) and the CF
example (in a lighter color). Users can focus on a few instances by
clicking them. Then the non-focal cells become row-focal cells where
the text of the exact feature value is presented.

5.4 Instance View
The instance view helps users inspect the diverse counterfactuals of a
single instance (R1). The inspection results can be used to support or
reject their hypothesis formed from the table view. For users, mostly
decision subjects instance view can be used independently to find
actionable suggestions to achieve the desired outcome.

The instance view consists of two parts. The setting panel
(Fig. 1B1) shows the prediction result of the input instance as well
as the target class for the CF examples. In the panel, users can
also set the number of CF examples they expect to find and the

maximum number of features that are allowed to change to ensure
the sparsity. The resulting panel (Fig. 1B2) displays each feature in
a row. It allows users to input a data instance by dragging sliders
to set values of each feature. The distribution of each feature value
is presented in a histogram, which suggests the users compare the
instance’s feature values with the overall distribution of the whole
dataset. For each feature, uses can add constraints (R2) by setting
the value range of CF examples or locking the feature to prevent it
from changing. The interactions help decision subjects to customize
actionable counterfactual explanations for their scenarios.

After users input the instance, they click the “search” button in the
panel. The system then returns all CF examples found in both valid
and invalid sets. The CF examples, as well as the original instances,
are presented in a set of polylines along parallel axes (Fig. 1B2),
where we use color to indicate their validity and prediction class. For
valid CF examples and the original instance, we apply the same color
use in the table view to show their prediction class, while invalid CF
examples are presented in grey. Users can depict details of a valid CF
example by hovering on the polyline. It is then highlighted, and the
text of each feature value will be presented on the axis.

6 EVALUATION

Next, we demonstrate the efficacy of DECE through three usage
scenarios targeting three types of users: decision-makers, model de-
velopers, and decision subjects. We also gather feedback from expert
users through formal interviews and interactive trails of the system.

6.1 Usage Scenario: Diabetes Classification

In the first scenario, Emma, a medical student who is interested in
the early diagnosis of diabetes, wants to figure out how a diabetes
prediction model makes predictions. She has done some medical
data analytics before, but she does not have much machine learning
knowledge. She finds the Pima Indian Diabetes Dataset (PIDD)
[33] and downloads a model trained on PIDD. The dataset consists
of medical measurements of 768 patients, who are all females of
Pima Indian heritage and at least 21 years old. The task is to predict
whether a patient will have diabetes within 5 years. The features of
each instance include the number of pregnancies, glucose level, blood
pressure, skin thickness, insulin, body mass index (BMI), diabetes
pedigree function (DPF), and age, which are all continuous features.
The dataset includes 572 negative (healthy) instances and 194 positive
(diabetic) instances. The model is a neural network with two hidden
layers with 76% and 79% test and training accuracy, respectively.

Formulate Hypothesis (R3). Emma is curious about how the
model makes predictions for patients younger than 40. Based on
her prior knowledge, she formulates a hypothesis that patients with
age < 40 and glucose < 100 mmol/L are likely to be healthy. She
loads the data and the model to DECE and creates a subgroup by
limiting the ranges on age and glucose accordingly.

Refine Hypothesis. The subgroup consists of 167 instances,
all predicted as negative. However, she notices that for most of
the features, the range boxes are colored with a dark red (Fig. 5A),
indicating that CF examples can be found within the subgroup. This
suggests that patients with a diabetic prediction potentially exist in
the subgroup and implies that the hypothesis may not be valid. After
a deeper inspection, she finds a number of CF examples (Fig. 5A1)
with age < 40. Then she checks each feature and tries to refine the
hypothesis by restricting the subgroup to a smaller one. She finds
that the BMI distribution of CF examples is shifted considerably to
the right in comparison to the original distribution (Fig. 5A2). This
means that BMI needs to be increased dramatically to flip the model’s
prediction to positive. Thus, Emma suspects that the original hypoth-
esis may not hold for patients with high BMI (obesity). She proceeds
to refine the subgroup by adding a constraint on BMI. The green peek
in the bottom sparkline (Fig. 5A2) suggests that a split at BMI = 35
could make a good subgroup. In the meantime, she discovers a similar
pattern for DPF (Fig. 5A3). She adds two constraints of BMI < 35
and DPF < 0.6, and then she creates an updated subgroup.
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Fig. 3. DECE consists of a Data Storage module, a CF Engine module,
and a Visual Analysis module. In the Visual Analysis module, the
table view and instance view together support an exploratory analysis
workflow.

5 DECE
In this section, we first introduce the architecture and workflow of
DECE. Then we describe the design choices in the two main system
interface components: table view and instance view.

5.1 Overview
As a decision exploration tool for machine learning models, DECE is
designed as a sever-client application. To make the system extensible
with different models and counterfactual explanation algorithms, we
design DECE with three major components: the Data Storage module,
the CF Engine module, and the Visual Analysis module. The former
two are integrated into a web-server implemented using Python with
Flask, and the last one is implemented with React and D3.

The Data Storage module provides configuration options so ad-
vanced users can easily supply their own classification models and
datasets. The CF Engine implements a set of algorithms for generating
CF examples with fully customizable constraints. It also implements
the procedure for producing subgroup-level CF examples (as described
in Sect. 4.2). The Visual Analysis module consists of an instance view
and a table view. The instance view allows a user to customize and
inspect the CF examples of a single instance of interest (R1, R2). The
table view presents a summary of the instances of the dataset and their
CF examples (R4). It allows subgroup-level analysis through easy
subgroup creation (R3) and counterfactual comparisons (R5).

The instance view and table view complement each other as a
whole in supporting the exploratory analysis of model decisions. As
shown in Fig. 3, by exploring the diverse CF examples of specific
instances in the instance view, users can spot potentially interesting
counterfactual phenomena and suggest related hypotheses. With
hypotheses in mind, either formulated through exploration or prior
experiences, users can utilize the r-counterfactuals integrated into the
table view to assessing plausibility. After refining a hypothesis, users
can then verify or reject it by attempting to validate the corresponding
instances in the instance view.

5.2 Visualization of Subgroup with R-counterfactuals
Verifying and refining the hypothesis on the model’s subgroup-level
behaviors is the most critical and challenging part of the exploratory
analysis procedure. We focus on one feature at a time and refine the
hypothesis achieved with r-counterfactuals (described in Sect. 4.2).
For each r-counterfactuals group, we use a set of hybrid visualiza-
tion to summarize and compare the r-counterfactuals and original
subgroup’s instance value on each focusing feature.

Visualize Distribution (R4). To summarize an r-counterfactuals
group, we use two side-by-side histograms to visualize the distribu-
tions of the original group and counterfactuals group (Fig. 4A). The
color of the bars indicates the prediction class. Sometimes, the system
cannot find valid CF examples, which indicates that the prediction for
these instances can hardly be altered by changing their feature values
with the constraints hold. In this case, we use grey bars to indicate
their number and stack them on the colored bar. The two histograms
are aligned horizontally, with the upper one referring to the original

Fig. 4. Design choices for visualizing subgroup with r-counterfactuals.
A-C. Our final choices. D. A matrix-based alternative design to visual-
ize instance-cf connections. E. A density-based alternative design to
visualize the distribution of the information gain.

data and the bottom one referring to the counterfactuals group. For
continuous features, a shadow box with two handles is drawn to show
the range of the subgroup’s feature value. To provide a visual hint for
the quality of the subgroup, we use the color intensity of the box to
signify the Gini impurity of data in this range. When users select a
subgroup containing instances all predicted as positive, a darker color
indicates that (negative) CF examples can be easily found within this
subgroup. In this case, the hypothesis might not be favorable and needs
to be refined or rejected. For categorical features, we use bar charts
instead. Triangle marks are used to indicate the selected categories.

Visualize Connection. CF examples are paired with original
instances. The pairing information between the two groups can help
users understand how the original instances need to change to flip
their predictions. In another sense, it also helps to understand how
the local decision boundary can be approximated [26]. Intuition hints
that the feature with a larger change is likely to be a more important
one. The magnitude of the changes also indicates how difficult the
subgroup predictions are to flip by modifying that feature. We use a
Sankey diagram to display the flow from original group bins (as input
bins) to counterfactual group bins (as output bins) (Fig. 4B). For each
link, the opacity encodes the flow amount while the width encodes the
relative flow amount to the input bin size. An alternative design is the
use of a matrix to visualize the flow between the bins (Fig. 4D). Each
cell in the matrix represents the number of instance-CF pairs that fail
in the corresponding bins. However, in practice, the links are quite
sparse. Thus, compared with the matrix, the Sankey diagram saves
much space and also emphasizes the major changes of CF from the
original value, so we choose the Sankey diagram as our final design.

Refine Subgroup (R3). As we have discussed in Sect. 4.2, a major
task during the exploration is to assess and refine the hypothesis.
What is a plausible hypothesis represented by a subgroup? A general
guideline is: a subgroup is likely to be a good one if it separates
instances with different prediction classes. The intuition is that if a
boundary can be found to separate the instances, the refined hypoth-
esis is likely to be valid. We choose the information gain based on
Gini impurity to indicate a good splitting point, which is widely used
in decision tree algorithms [5]. The information gain is computed as
1− (Nle f t/N) · IG(Dle f t)− (Nright/N) · IG(Dright), where Dle f t ,Dright
are the data including both original instances and CF examples, split
into the left set or the right set. At first, we try to visualize the infor-
mation gain in a heatmap lie between the two histograms (Fig. 4E).
Though such design has the advantage of not requiring extra space, we
find that it is hard to distinguish the splitting point with the maximum
information gain from the heat map. To make the visual hint salient,
we visualize the impurity scores as a small Sparkline under the his-
tograms. We use color and height to double encode this information.
For continuous features, we enable users to refine the hypothesis by
dragging the handles to a new range. And for categorical features,
users are allowed to click the bars to update the selected categories.

5.3 Table View
The table view (Fig.1A) is a major component and entry point of
DECE. Organized as a table, this view summarizes the subgroups with
their r-counterfactuals as well as the details of instances in a focused
subgroup. Vertically, the table view consists of three parts. From top
to bottom, they are the table header, the subgroup list, and the instance
lens. The table header is a navigator to help users explore the data in
the rest of the table. The subgroup list shows a summary of multiple
groups, while the instance lens shows details for a specific subgroup.
The three components are aligned horizontally with multiple columns,
each corresponding to a feature in the dataset. The first column, as an
exception, shows the label and prediction information. Next, we ex-
plain the three parts and interactions that enable them to work together.

Table Header. The table header (Fig.1A1) presents the overall
data distribution of the features in a set of linked histograms/bar
charts. The first column shows the predictions of the instances in
a stacked bar chart, where each bar represents a prediction class.
Users can click a bar to focus on a specific class. We indicate false
predictions by a hatched bar area and true predictions by a solid bar
area. In each feature column, we also use two histograms/bar charts
(introduced in Sect. 5.2) to visualize the distribution of the instances
and CF examples. Users can efficiently explore the data and their
CF examples via filtering and sorting. For each feature, filtering
is supported by brushing (for continuous features) or clicking (for
categorical features) on both histograms/bar charts. After filtering,
that data is highlighted in the histograms while the rest is represented
as translucent bars. To sort, users can click on the up/down buttons
that pop-up when hovering on each feature.

Subgroup List. The subgroup list (Fig.1A2) allows users to cre-
ate, refine, and compare different subgroups. Here, each row corre-
sponds to a subgroup. The first column presents the predictions of
the instances in the same design used in the table header. In other
columns, each cell (i, j) presents a summary of the subgroup i with
r-counterfactuals for the feature j (introduced in Sect. 5.2). The sub-
group list is initialed with one default group, which is the whole dataset
with unconstrained CF examples. Starting with this group, users can
refine the group by changing ranges for each feature and clicking the
update button. The users can also copy or delete an unwanted sub-
group to maintain the subgroup list, which helps track explorations
history. By aligning different subgroups together, users can gain in-
sights from a side-by-side comparison (R5).

Instance Lens. When users click a cell in the subgroup list, the
instance lens (Fig.1A3) presents details pertaining to each instance
and CF examples. To ensure the scalability to a large group of
instances, we design an instance lens based on Table Lens [27], a
technique for visualizing large tables. In the instance lens, we design
two types of cells: row-focal and non-focal cells with different visual
representations. A CF example shows minimal changes from the
original instance. For numerical features, we use a line segment to
show how the change is made. The x-position of the two endpoints
encodes the feature value of the original instance and the CF example.
The endpoint corresponding to the original instance is marked black.
We use green and red to indicate a positive or negative change. For
categorical features, we use two broad line segments to indicate
the category of the original instance (in a deeper color) and the CF
example (in a lighter color). Users can focus on a few instances by
clicking them. Then the non-focal cells become row-focal cells where
the text of the exact feature value is presented.

5.4 Instance View
The instance view helps users inspect the diverse counterfactuals of a
single instance (R1). The inspection results can be used to support or
reject their hypothesis formed from the table view. For users, mostly
decision subjects instance view can be used independently to find
actionable suggestions to achieve the desired outcome.

The instance view consists of two parts. The setting panel
(Fig. 1B1) shows the prediction result of the input instance as well
as the target class for the CF examples. In the panel, users can
also set the number of CF examples they expect to find and the

maximum number of features that are allowed to change to ensure
the sparsity. The resulting panel (Fig. 1B2) displays each feature in
a row. It allows users to input a data instance by dragging sliders
to set values of each feature. The distribution of each feature value
is presented in a histogram, which suggests the users compare the
instance’s feature values with the overall distribution of the whole
dataset. For each feature, uses can add constraints (R2) by setting
the value range of CF examples or locking the feature to prevent it
from changing. The interactions help decision subjects to customize
actionable counterfactual explanations for their scenarios.

After users input the instance, they click the “search” button in the
panel. The system then returns all CF examples found in both valid
and invalid sets. The CF examples, as well as the original instances,
are presented in a set of polylines along parallel axes (Fig. 1B2),
where we use color to indicate their validity and prediction class. For
valid CF examples and the original instance, we apply the same color
use in the table view to show their prediction class, while invalid CF
examples are presented in grey. Users can depict details of a valid CF
example by hovering on the polyline. It is then highlighted, and the
text of each feature value will be presented on the axis.

6 EVALUATION

Next, we demonstrate the efficacy of DECE through three usage
scenarios targeting three types of users: decision-makers, model de-
velopers, and decision subjects. We also gather feedback from expert
users through formal interviews and interactive trails of the system.

6.1 Usage Scenario: Diabetes Classification

In the first scenario, Emma, a medical student who is interested in
the early diagnosis of diabetes, wants to figure out how a diabetes
prediction model makes predictions. She has done some medical
data analytics before, but she does not have much machine learning
knowledge. She finds the Pima Indian Diabetes Dataset (PIDD)
[33] and downloads a model trained on PIDD. The dataset consists
of medical measurements of 768 patients, who are all females of
Pima Indian heritage and at least 21 years old. The task is to predict
whether a patient will have diabetes within 5 years. The features of
each instance include the number of pregnancies, glucose level, blood
pressure, skin thickness, insulin, body mass index (BMI), diabetes
pedigree function (DPF), and age, which are all continuous features.
The dataset includes 572 negative (healthy) instances and 194 positive
(diabetic) instances. The model is a neural network with two hidden
layers with 76% and 79% test and training accuracy, respectively.

Formulate Hypothesis (R3). Emma is curious about how the
model makes predictions for patients younger than 40. Based on
her prior knowledge, she formulates a hypothesis that patients with
age < 40 and glucose < 100 mmol/L are likely to be healthy. She
loads the data and the model to DECE and creates a subgroup by
limiting the ranges on age and glucose accordingly.

Refine Hypothesis. The subgroup consists of 167 instances,
all predicted as negative. However, she notices that for most of
the features, the range boxes are colored with a dark red (Fig. 5A),
indicating that CF examples can be found within the subgroup. This
suggests that patients with a diabetic prediction potentially exist in
the subgroup and implies that the hypothesis may not be valid. After
a deeper inspection, she finds a number of CF examples (Fig. 5A1)
with age < 40. Then she checks each feature and tries to refine the
hypothesis by restricting the subgroup to a smaller one. She finds
that the BMI distribution of CF examples is shifted considerably to
the right in comparison to the original distribution (Fig. 5A2). This
means that BMI needs to be increased dramatically to flip the model’s
prediction to positive. Thus, Emma suspects that the original hypoth-
esis may not hold for patients with high BMI (obesity). She proceeds
to refine the subgroup by adding a constraint on BMI. The green peek
in the bottom sparkline (Fig. 5A2) suggests that a split at BMI = 35
could make a good subgroup. In the meantime, she discovers a similar
pattern for DPF (Fig. 5A3). She adds two constraints of BMI < 35
and DPF < 0.6, and then she creates an updated subgroup.
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Fig. 5. Understanding diabetes prediction on a young subgroup with a hypothesis refinement process. A. The initial hypothesis—“patients with
Glucose < 100 and age < 40 are healthy”—is not valid as suggested by several CF examples found inside the range (A1). B. The hypothesis is
refined by constraining BMI < 35, and DPF < 0.6, as suggested by the green peaks under the histograms (A2, A3). The hypothesis is still not
plausible given the CF examples within the range (B1). After studying cell B1, all CF examples have an uncommonly high pregnancy value (B3).
C. The user refines the hypothesis by limiting pregnancies <= 6. All valid CF examples left in the subgroup have abnormal blood pressure (C1). D.
After filtering out instances with an abnormal low (< 40) blood pressure (D1), the final hypothesis is now fully supported by all CF examples.

After the refinement, Emma finds that most of the cells are covered
by a transparent range box or filled with mostly light grey bars
(Fig. 5B). The light grey area represents the instances for which no
valid CF examples can be found. One exception is the BMI cell
(Fig. 5B1), where a few CF examples can still be generated. To check
the details, Emma focuses on this subgroup by clicking the “zoom-in”
button. After the table header is updated, she filters the CF examples
with BMI < 35 by brushing on the header cell (Fig. 5B2). She finds
that all the valid CF examples have an extreme pregnancy value
(Fig. 5B3), which means patients who have had several pregnancies
are exceptions to the hypothesis. However, such pregnancy values
are very rare, so Emma updates the subgroup with a constraint of
pregnancy < 6, which covers most of this subgroup.

After the second update, the refined hypothesis is almost valid,
yet some CF examples can still be found in the subgroup, which
challenges the hypothesis (Fig. 5C1). By checking the detailed
instances of “unsplit” feature groups, she finds that all these valid
CF examples have an unlikely blood pressure of 0. These blood
pressure values are likely caused by missing data entries. She raises
the minimum blood pressure value to a normal value of 40 and then
makes the third update. The final subgroup consists of 86 instances,
all predicted negative for diabetes, and all feature cells are covered
with a totally transparent box, indicating a fully plausible hypothesis.

Draw Conclusions. After three rounds of refinement, Emma
concludes that patients with age < 40, glucose < 100, BMI <
35, and DPF < 0.8 are extremely unlikely to have diabetes within
the next five years, as suggested by the model. This statement is
supported by 86 out of 768 instances in the dataset (11%) and their
corresponding counterfactual instances. Generally, Emma is satisfied
with the conclusion but concerned with something she sees in the
blood pressure column. It seems that although all the bars turn grey,
a clear shift between the two histograms exists (Fig. 5D1), indicating
that the model is trying to find CF examples with low blood pressures.

She is confused about why low blood pressure can also be a
symptom of diabetes. Initially, she thinks it may be a local flaw in
the model caused by mislabeled instances of 0 blood pressure. So
she finds another model trained on a clean dataset and runs the same
procedure. However, the pattern still exists. After some research, she
finds out that a diabetes-related disease called Diabetic Neuropathy1

may cause low blood pressure by damaging a type of nerve called

1https://en.wikipedia.org/wiki/Diabetic neuropathy

autonomic neuropathy. She concludes the exploratory analysis and
gains new knowledge from the process.

6.2 Usage Scenario: Credit Risk
In this usage scenario, we show how DECE can help model developers
understand their models. Specifically, we demonstrate how compar-
ative analysis of multiple subgroups can support their exploration.

A model developer, Billy, builds a credit risk prediction model from
the German Credit Dataset [9]. The dataset contains credit and per-
sonal information of 1000 people and their credit risk label of either
good or bad. The model he trained is a neural network with two hid-
den layers, which achieves an accuracy of 82.2% on the training set
and 74.5% on the test set. Billy wants to know how the model makes
predictions for different subgroups of people (R5). Particularly, he
wants to figure out if gender affects the model’s prediction and the
behavior of the model’s predictions on different gender groups.

Billy begins the exploration by using the whole dataset and CF
examples (Fig. 6A). He notices that most of the CF examples with a
flipped prediction as bad-risk have an extremely large amount of debt
or debt that has lasted a long time (Fig. 6A1). This finding indicates
that almost certainly, a client with an extremely large credit amount
or duration would be predicted as a bad credit risk.

Select Subgroup (R3). He wants to learn if there are other factors
that might affect credit risk prediction. So he creates a subgroup with
credit amount < 6000 DM and duration < 40 months, containing a
majority of the dataset. Then he selects the male group to inspect the
model’s predictions and counterfactual explanations. The male group
(Fig. 6B) contains a total of 550 instances, and 511 instances are
predicted to be good candidates. Billy checks the gender column and
finds that a few CF examples are generated by changing the gender
from male to female (Fig. 6B1). After Billy zooms in to the gender
cell and filters the CF examples with gender = f emale (Fig. 6B2), he
finds that 22 instances have CF examples with gender changed. This
indicates that gender may be considered in the prediction.

Inspect Instance. Billy wants to figure out whether this
pattern is intentional or accidental. He randomly puts one in-
stance into the instance view. Billy sets the feature ranges,
credit amount < 6000 and duration < 40 to be the same as the
subgroup’s feature ranges. He clicks the search button to find a set
of CF examples to probe the model’s local decision (Fig. 6B3). He
finds that all valid CF examples alter the prediction from good credit
candidates to bad credit candidates by either suggesting a worse job

Fig. 6. Subgroup comparison on a neural network trained on German Credit Dataset. A. The whole dataset with CF examples where the
distribution of the credit duration (A1) suggests that a long duration of debt will lead to a “bad” risk for all loan applicants. B. The male subgroup
covers a majority of male instances, where the gender column (B1) suggests that a few CF examples are generated by changing the gender from
male to female (B2). B3. Diverse CF examples against a sample male instance from B2, where all valid CF examples (orange lines) suggest either
to change the gender from male to female or to degrade the job rank. C. The narrowed male subgroup, where a larger portion of the instances
have CF examples that change their gender to female (C1). The CF examples are found far from the subgroup (C2). D. The contrast female
subgroup against the male subgroup C, where CF examples can be found within the subgroup (D1).

(down by one rank) or changing the gender from male to female. He
locks the job attribute and tries again. He finds that all CF examples
suggest changing the gender from male to female. This indicates that
gender affects the model’s prediction in this instance and similar ones.

Refine Subgroup. Then Billy wants to find if there are any
subgroups where gender has an enormous impact. He finds most
of the male instances with unactionable CF examples that need to
change their genders are from a subgroup of wealthy people, who
have a good job (2-3), an above-moderate saving account balance,
and apply for credit in order to buy a car (Fig. 6B2). Billy creates
a wealthy subgroup and makes the update (Fig. 6C). Then he finds
that compared with the former group, a larger portion of the instances
have CF examples that change their gender to female (Fig. 6C1). The
major shift of gender in the CF examples implies that gender plays a
more important role in the predictions of the wealthy subgroup.

Compare Subgroups (R5). To confirm this observation, Billy
compares the male subgroup with another female subgroup, which
has all of the same feature ranges except gender (R5). Billy finds
that all 56 instances in the male subgroup are predicted as good credit
candidates, and in the female subgroup, 29 out of 30 instances are
predicted to be good credit candidates (Fig. 6D). Then Billy compares
the distribution of the CF examples against the two subgroups. In the
male subgroup (Fig. 6C), indicated by the transparent range boxes, all
the valid CF examples are generated out of range. These CF examples
support the conclusion that any potential male applicant within this
subgroup is very unlikely to be predicted as a bad credit risk. In the
credit amount column (Fig. 6C1), all the valid CF examples are found
with credit amount > 10000 DM. This means that if a man, who has
a good job (2-3) and an above-moderate saving accounts balances,
applies for a line of credit of 10000 DM with a term of fewer than 40
months, it is very likely that his request will be approved. However,
in the female subgroup (Fig. 6D), a large amount of CF examples
are found within this group. In the credit amount column (Fig. 6D1),
CF examples can be found with credit amount < 6000 DM. This
indicates that a loan request of credit amount = 6000 DM from a
woman in the same condition may be rejected.

Draw Conclusions. After the exploratory analysis, Billy concludes
that gender plays an important role in the model’s prediction for a
subgroup of wealthy people defined above. In addition, the finding is
supported by both instance-level and subgroup-level evidence. This is
a strong sign that the model might behave unfairly towards different

genders. Billy then decides to inspect the training data and conduct
further research to eliminate the model’s probable gender bias.

6.3 Usage Scenario: Graduate Admissions
In this usage scenario, we show how DECE provides model subjects
with actionable suggestions. Vincent, an undergraduate student with a
major in computer science, is preparing an application for a master’s
program. He wants to know how the admission decision is made and if
there are any actionable suggestions that he can follow. He has down-
loaded a classifier, a neural network with two hidden layers trained on
a Graduate Admission Dataset [1] to predict whether a student will be
admitted to a graduate program. He inputs his profile information and
the model predicts that he is unlikely to be accepted. He wants to know
how he can improve his profile to increase his acceptance chance.

He chooses DECE and focuses on the instance view. He inputs
his profile information using the sliders. He finds that compared with
other instances in the whole dataset, his cumulative GPA (CGPA)
of 8.2 is average while both his GRE score, 310, and TOFEL score,
96, are below average. According to the provided rating scheme, he
sets his undergraduate university rating, statement of purpose, and
recommendation letter as 2, 3, and 2, respectively, which are all below
average. Then he attempts to find valid CF examples. First, he goes
through the attributes and locks the university rating since it is not
changeable (R2). Then he sets the number of CF examples to 15 and
clicks the search button to get the results (Fig. 7A). He is surprised
that so many diverse CF examples can be found (R1). However, he
finds that over half of these CF examples have either a high GRE score
(above 320) or TOEFL score (above 108), which would be challenging
for him to achieve. Since he has already finished most of the courses
in the undergraduate program, it would be difficult to boost his CGPA.
So, considering his current situation, he locks the CGPA as well and
tries to find CF examples with GRE < 320 and TOEFL < 100 (R2).
In the second round of attempts, the system can still find a few valid
CF examples (7B). He notices that all valid CF examples contain a
GRE score above 315, which might indicate a lower bound of the
GRE score initially suggested by the model. Also, all the valid CF
examples suggest that a stronger recommendation letter would help.

Finally, Vincent is satisfied with the knowledge learned from the
investigation and decides to pick a CF example to guide his applica-
tion preparation, which suggests he increase his GRE score to 317,
TOEFL score to 100, and obtain a stronger recommendation letter.
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Fig. 5. Understanding diabetes prediction on a young subgroup with a hypothesis refinement process. A. The initial hypothesis—“patients with
Glucose < 100 and age < 40 are healthy”—is not valid as suggested by several CF examples found inside the range (A1). B. The hypothesis is
refined by constraining BMI < 35, and DPF < 0.6, as suggested by the green peaks under the histograms (A2, A3). The hypothesis is still not
plausible given the CF examples within the range (B1). After studying cell B1, all CF examples have an uncommonly high pregnancy value (B3).
C. The user refines the hypothesis by limiting pregnancies <= 6. All valid CF examples left in the subgroup have abnormal blood pressure (C1). D.
After filtering out instances with an abnormal low (< 40) blood pressure (D1), the final hypothesis is now fully supported by all CF examples.

After the refinement, Emma finds that most of the cells are covered
by a transparent range box or filled with mostly light grey bars
(Fig. 5B). The light grey area represents the instances for which no
valid CF examples can be found. One exception is the BMI cell
(Fig. 5B1), where a few CF examples can still be generated. To check
the details, Emma focuses on this subgroup by clicking the “zoom-in”
button. After the table header is updated, she filters the CF examples
with BMI < 35 by brushing on the header cell (Fig. 5B2). She finds
that all the valid CF examples have an extreme pregnancy value
(Fig. 5B3), which means patients who have had several pregnancies
are exceptions to the hypothesis. However, such pregnancy values
are very rare, so Emma updates the subgroup with a constraint of
pregnancy < 6, which covers most of this subgroup.

After the second update, the refined hypothesis is almost valid,
yet some CF examples can still be found in the subgroup, which
challenges the hypothesis (Fig. 5C1). By checking the detailed
instances of “unsplit” feature groups, she finds that all these valid
CF examples have an unlikely blood pressure of 0. These blood
pressure values are likely caused by missing data entries. She raises
the minimum blood pressure value to a normal value of 40 and then
makes the third update. The final subgroup consists of 86 instances,
all predicted negative for diabetes, and all feature cells are covered
with a totally transparent box, indicating a fully plausible hypothesis.

Draw Conclusions. After three rounds of refinement, Emma
concludes that patients with age < 40, glucose < 100, BMI <
35, and DPF < 0.8 are extremely unlikely to have diabetes within
the next five years, as suggested by the model. This statement is
supported by 86 out of 768 instances in the dataset (11%) and their
corresponding counterfactual instances. Generally, Emma is satisfied
with the conclusion but concerned with something she sees in the
blood pressure column. It seems that although all the bars turn grey,
a clear shift between the two histograms exists (Fig. 5D1), indicating
that the model is trying to find CF examples with low blood pressures.

She is confused about why low blood pressure can also be a
symptom of diabetes. Initially, she thinks it may be a local flaw in
the model caused by mislabeled instances of 0 blood pressure. So
she finds another model trained on a clean dataset and runs the same
procedure. However, the pattern still exists. After some research, she
finds out that a diabetes-related disease called Diabetic Neuropathy1

may cause low blood pressure by damaging a type of nerve called

1https://en.wikipedia.org/wiki/Diabetic neuropathy

autonomic neuropathy. She concludes the exploratory analysis and
gains new knowledge from the process.

6.2 Usage Scenario: Credit Risk
In this usage scenario, we show how DECE can help model developers
understand their models. Specifically, we demonstrate how compar-
ative analysis of multiple subgroups can support their exploration.

A model developer, Billy, builds a credit risk prediction model from
the German Credit Dataset [9]. The dataset contains credit and per-
sonal information of 1000 people and their credit risk label of either
good or bad. The model he trained is a neural network with two hid-
den layers, which achieves an accuracy of 82.2% on the training set
and 74.5% on the test set. Billy wants to know how the model makes
predictions for different subgroups of people (R5). Particularly, he
wants to figure out if gender affects the model’s prediction and the
behavior of the model’s predictions on different gender groups.

Billy begins the exploration by using the whole dataset and CF
examples (Fig. 6A). He notices that most of the CF examples with a
flipped prediction as bad-risk have an extremely large amount of debt
or debt that has lasted a long time (Fig. 6A1). This finding indicates
that almost certainly, a client with an extremely large credit amount
or duration would be predicted as a bad credit risk.

Select Subgroup (R3). He wants to learn if there are other factors
that might affect credit risk prediction. So he creates a subgroup with
credit amount < 6000 DM and duration < 40 months, containing a
majority of the dataset. Then he selects the male group to inspect the
model’s predictions and counterfactual explanations. The male group
(Fig. 6B) contains a total of 550 instances, and 511 instances are
predicted to be good candidates. Billy checks the gender column and
finds that a few CF examples are generated by changing the gender
from male to female (Fig. 6B1). After Billy zooms in to the gender
cell and filters the CF examples with gender = f emale (Fig. 6B2), he
finds that 22 instances have CF examples with gender changed. This
indicates that gender may be considered in the prediction.

Inspect Instance. Billy wants to figure out whether this
pattern is intentional or accidental. He randomly puts one in-
stance into the instance view. Billy sets the feature ranges,
credit amount < 6000 and duration < 40 to be the same as the
subgroup’s feature ranges. He clicks the search button to find a set
of CF examples to probe the model’s local decision (Fig. 6B3). He
finds that all valid CF examples alter the prediction from good credit
candidates to bad credit candidates by either suggesting a worse job

Fig. 6. Subgroup comparison on a neural network trained on German Credit Dataset. A. The whole dataset with CF examples where the
distribution of the credit duration (A1) suggests that a long duration of debt will lead to a “bad” risk for all loan applicants. B. The male subgroup
covers a majority of male instances, where the gender column (B1) suggests that a few CF examples are generated by changing the gender from
male to female (B2). B3. Diverse CF examples against a sample male instance from B2, where all valid CF examples (orange lines) suggest either
to change the gender from male to female or to degrade the job rank. C. The narrowed male subgroup, where a larger portion of the instances
have CF examples that change their gender to female (C1). The CF examples are found far from the subgroup (C2). D. The contrast female
subgroup against the male subgroup C, where CF examples can be found within the subgroup (D1).

(down by one rank) or changing the gender from male to female. He
locks the job attribute and tries again. He finds that all CF examples
suggest changing the gender from male to female. This indicates that
gender affects the model’s prediction in this instance and similar ones.

Refine Subgroup. Then Billy wants to find if there are any
subgroups where gender has an enormous impact. He finds most
of the male instances with unactionable CF examples that need to
change their genders are from a subgroup of wealthy people, who
have a good job (2-3), an above-moderate saving account balance,
and apply for credit in order to buy a car (Fig. 6B2). Billy creates
a wealthy subgroup and makes the update (Fig. 6C). Then he finds
that compared with the former group, a larger portion of the instances
have CF examples that change their gender to female (Fig. 6C1). The
major shift of gender in the CF examples implies that gender plays a
more important role in the predictions of the wealthy subgroup.

Compare Subgroups (R5). To confirm this observation, Billy
compares the male subgroup with another female subgroup, which
has all of the same feature ranges except gender (R5). Billy finds
that all 56 instances in the male subgroup are predicted as good credit
candidates, and in the female subgroup, 29 out of 30 instances are
predicted to be good credit candidates (Fig. 6D). Then Billy compares
the distribution of the CF examples against the two subgroups. In the
male subgroup (Fig. 6C), indicated by the transparent range boxes, all
the valid CF examples are generated out of range. These CF examples
support the conclusion that any potential male applicant within this
subgroup is very unlikely to be predicted as a bad credit risk. In the
credit amount column (Fig. 6C1), all the valid CF examples are found
with credit amount > 10000 DM. This means that if a man, who has
a good job (2-3) and an above-moderate saving accounts balances,
applies for a line of credit of 10000 DM with a term of fewer than 40
months, it is very likely that his request will be approved. However,
in the female subgroup (Fig. 6D), a large amount of CF examples
are found within this group. In the credit amount column (Fig. 6D1),
CF examples can be found with credit amount < 6000 DM. This
indicates that a loan request of credit amount = 6000 DM from a
woman in the same condition may be rejected.

Draw Conclusions. After the exploratory analysis, Billy concludes
that gender plays an important role in the model’s prediction for a
subgroup of wealthy people defined above. In addition, the finding is
supported by both instance-level and subgroup-level evidence. This is
a strong sign that the model might behave unfairly towards different

genders. Billy then decides to inspect the training data and conduct
further research to eliminate the model’s probable gender bias.

6.3 Usage Scenario: Graduate Admissions
In this usage scenario, we show how DECE provides model subjects
with actionable suggestions. Vincent, an undergraduate student with a
major in computer science, is preparing an application for a master’s
program. He wants to know how the admission decision is made and if
there are any actionable suggestions that he can follow. He has down-
loaded a classifier, a neural network with two hidden layers trained on
a Graduate Admission Dataset [1] to predict whether a student will be
admitted to a graduate program. He inputs his profile information and
the model predicts that he is unlikely to be accepted. He wants to know
how he can improve his profile to increase his acceptance chance.

He chooses DECE and focuses on the instance view. He inputs
his profile information using the sliders. He finds that compared with
other instances in the whole dataset, his cumulative GPA (CGPA)
of 8.2 is average while both his GRE score, 310, and TOFEL score,
96, are below average. According to the provided rating scheme, he
sets his undergraduate university rating, statement of purpose, and
recommendation letter as 2, 3, and 2, respectively, which are all below
average. Then he attempts to find valid CF examples. First, he goes
through the attributes and locks the university rating since it is not
changeable (R2). Then he sets the number of CF examples to 15 and
clicks the search button to get the results (Fig. 7A). He is surprised
that so many diverse CF examples can be found (R1). However, he
finds that over half of these CF examples have either a high GRE score
(above 320) or TOEFL score (above 108), which would be challenging
for him to achieve. Since he has already finished most of the courses
in the undergraduate program, it would be difficult to boost his CGPA.
So, considering his current situation, he locks the CGPA as well and
tries to find CF examples with GRE < 320 and TOEFL < 100 (R2).
In the second round of attempts, the system can still find a few valid
CF examples (7B). He notices that all valid CF examples contain a
GRE score above 315, which might indicate a lower bound of the
GRE score initially suggested by the model. Also, all the valid CF
examples suggest that a stronger recommendation letter would help.

Finally, Vincent is satisfied with the knowledge learned from the
investigation and decides to pick a CF example to guide his applica-
tion preparation, which suggests he increase his GRE score to 317,
TOEFL score to 100, and obtain a stronger recommendation letter.
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Fig. 7. A student gets actionable suggestions for graduate admission
applications. A. Diverse CF examples generated with university rating
locked. B. Customized CF examples with user constraints, including
GRE score < 320, TOFEL score < 100, and a locked CGPA.

6.4 Expert Interview
To validate how effective DECE is in supporting decision-makers and
decision subjects, we conduct individual interviews with three medical
students (E1, E2, E3). All medical students have had a one-year clin-
ical internship in hospitals. They have basic knowledge of statistics
and can read simple visualizations. These (almost) medical practition-
ers can be regarded as decision-makers in the medical industry. Also,
they have experience interacting with patients and can offer valuable
feedback regarding the need from end-users.

The interviews were held in a semi-structured format. We first intro-
duced the counterfactual-based methods by cases and figures without
algorithm details. Then we introduced the interface of DECE using
the live case example from Sect. 6.1. The introductory session took 30
minutes. Afterward, we asked them to explore DECE using the Pima
Indian Diabetes Dataset for 20 minutes and collected feedback about
their user experience, scenarios for using the system, and suggestions
for improvements.

System Design. Overall, E1 and E2 suggested that the system is
easy to use, while E3 had some confusion with the instance lens, where
she mistakenly thought that the line in a non-focal cell encodes some
range values. After shown with more concrete examples about how
the non-focal cells and row-focal cells switch to each other, she got to
understand. E1 mentioned that the color intensity of the shadow box
in each subgroup shows cells in a very prominent way, suggesting a
group of healthy patients have potential risks to have the disease.

Usage Scenarios. E1 suggested that the subgroup list in the ta-
ble view helped her understand the potential risk level of her patients
becoming diabetic, “so that I can decide if any medical intervention
should be taken.” However, both E2 and E3 suggested that the ta-
ble view would be more useful in clinical research scenarios, such as
understanding the clinical manifestations of multi-factorial diseases.
“Doctors can then use the valid conclusions for diagnosis,” E2 said.
When asked whether they would recommend patients use the instance
view to find suggestions by themselves, E2 and E3 showed concerns,
saying that “the knowledge variance of patients can be very broad.”
Despite this concern, they mentioned that they would love to use
DECE themselves to help patients find disease prevention suggestions.

Suggestions for Improvements. All three experts agreed that the
instance view has a high potential for doctors and patients to apply
it in clinical scenarios together, but some domain-specific problems
must be considered. E1 suggested that we should allow users to set the
value of some attributes as not applicable because “for the same dis-
ease, the test items can be different for patients.” E2 commented that
the histograms for each attribute did not help her much. She suggested
showing the reference ranges for each attribute as another option.

7 DISCUSSION AND CONCLUSION

In this work, we introduced DECE, a counterfactual-based approach,
to help model developers and model users explore and understand ML
models’ decisions. DECE supports iteratively probing the decision
boundaries of classifiers by analyzing subgroup counterfactuals and
generating actionable examples by interactively imposing constraints
on possible feature variations. We demonstrated the effectiveness of
DECE via three usage scenarios from different domains, including fi-
nance, education, and healthcare, and included an expert interview.

Scalability to Large Datasets. The current design of the table view
can visualize nine subgroup rows or about one thousand instance rows
(one instance requires one vertical pixel) on a laptop screen with 1920
× 1080 resolution. Users can collapse the features they are not inter-
ested in and inspect the details of a feature by increasing the column
width. In most cases, about ten columns can be displayed in the table.

In addition to the three datasets used in Sect. 6, we also validated the
efficiency of our algorithm on a large dataset, HELOC [7] (N=10459).
We used a 2.5GHz Intel Core i5 CPU (4 cores). Generating single CF
examples for the entire dataset took around 16 seconds. We found that
the optimization converges slower for datasets with many categorical
features, such as the German Credit Dataset. To speed up the genera-
tion process, we envision future research to apply strategies from syn-
thetic tabular data generation literature, such as smoothing categorical
features [44] and parallelism.

Generalizability to Other ML Models. The DECE prototype was
developed for differentiable binary classifiers on tabular data. How-
ever, DECE can be extended for multiclass classification by selecting a
target class manually or heuristically for each instance (e.g., the second
most probable class predicted by the model). For non-differentiable
models (e.g., decision trees) or models for unstructured data (e.g., im-
age and text), generating good counterfactual explanations is an active
research problem, and we expect to support this in the future.

R-counterfactuals and Exploratory Analysis. R-counterfactuals
are flexible instruments to understand the subgroup-level behavior of
an ML model. A general workflow for using it with DECE is as fol-
lows: 1) users start by specifying a subgroup of interest; 2) from the
subgroup visualization, users can view the class and impurity distribu-
tion along with each feature; 3) users can then choose an interesting or
salient feature and further refine the subgroup; 4) continue 2) and 3)
until they get a comparably “pure” subgroup, which implies that the
findings on this subgroup are salient and valid.

Improvements in the System Design. We expect to make further
improvements to the system design in the future. In the table view,
we plan to improve the design of subgroup cells for categorical fea-
tures. One direction is to provide suggestions for an optimal selection
of categories to refine the hypothesis. Besides, we plan to implement
more interactions to support the “focus + context” display in the in-
stance lens (e.g., focusing on multiple instances through brushing). In
the instance view, we plan to provide users with different levels of
interactions, e.g., allowing advanced users to directly manipulate the
feature weights in the distance metric.

Effectiveness of Counterfactual Explanations. In this paper, we
presented three usage scenarios to demonstrate how DECE can be used
by different types of users. However, we only conducted expert inter-
views with medical students who can be regarded as decision-makers.
To better understand the effectiveness of DECE and CFs, we plan to
conduct user studies by recruiting model developers, data scientists,
and layman users (for the instance view only). At the instance-level,
we expect to understand how different factors (e.g., proximity, diver-
sity, and sparsity) affect the users’ satisfaction with the CFs. And it is
interesting to know how well r-counterfactuals can support exploratory
analysis for datasets in different domains at the subgroup-level.
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Fig. 7. A student gets actionable suggestions for graduate admission
applications. A. Diverse CF examples generated with university rating
locked. B. Customized CF examples with user constraints, including
GRE score < 320, TOFEL score < 100, and a locked CGPA.

6.4 Expert Interview
To validate how effective DECE is in supporting decision-makers and
decision subjects, we conduct individual interviews with three medical
students (E1, E2, E3). All medical students have had a one-year clin-
ical internship in hospitals. They have basic knowledge of statistics
and can read simple visualizations. These (almost) medical practition-
ers can be regarded as decision-makers in the medical industry. Also,
they have experience interacting with patients and can offer valuable
feedback regarding the need from end-users.

The interviews were held in a semi-structured format. We first intro-
duced the counterfactual-based methods by cases and figures without
algorithm details. Then we introduced the interface of DECE using
the live case example from Sect. 6.1. The introductory session took 30
minutes. Afterward, we asked them to explore DECE using the Pima
Indian Diabetes Dataset for 20 minutes and collected feedback about
their user experience, scenarios for using the system, and suggestions
for improvements.

System Design. Overall, E1 and E2 suggested that the system is
easy to use, while E3 had some confusion with the instance lens, where
she mistakenly thought that the line in a non-focal cell encodes some
range values. After shown with more concrete examples about how
the non-focal cells and row-focal cells switch to each other, she got to
understand. E1 mentioned that the color intensity of the shadow box
in each subgroup shows cells in a very prominent way, suggesting a
group of healthy patients have potential risks to have the disease.

Usage Scenarios. E1 suggested that the subgroup list in the ta-
ble view helped her understand the potential risk level of her patients
becoming diabetic, “so that I can decide if any medical intervention
should be taken.” However, both E2 and E3 suggested that the ta-
ble view would be more useful in clinical research scenarios, such as
understanding the clinical manifestations of multi-factorial diseases.
“Doctors can then use the valid conclusions for diagnosis,” E2 said.
When asked whether they would recommend patients use the instance
view to find suggestions by themselves, E2 and E3 showed concerns,
saying that “the knowledge variance of patients can be very broad.”
Despite this concern, they mentioned that they would love to use
DECE themselves to help patients find disease prevention suggestions.

Suggestions for Improvements. All three experts agreed that the
instance view has a high potential for doctors and patients to apply
it in clinical scenarios together, but some domain-specific problems
must be considered. E1 suggested that we should allow users to set the
value of some attributes as not applicable because “for the same dis-
ease, the test items can be different for patients.” E2 commented that
the histograms for each attribute did not help her much. She suggested
showing the reference ranges for each attribute as another option.

7 DISCUSSION AND CONCLUSION

In this work, we introduced DECE, a counterfactual-based approach,
to help model developers and model users explore and understand ML
models’ decisions. DECE supports iteratively probing the decision
boundaries of classifiers by analyzing subgroup counterfactuals and
generating actionable examples by interactively imposing constraints
on possible feature variations. We demonstrated the effectiveness of
DECE via three usage scenarios from different domains, including fi-
nance, education, and healthcare, and included an expert interview.

Scalability to Large Datasets. The current design of the table view
can visualize nine subgroup rows or about one thousand instance rows
(one instance requires one vertical pixel) on a laptop screen with 1920
× 1080 resolution. Users can collapse the features they are not inter-
ested in and inspect the details of a feature by increasing the column
width. In most cases, about ten columns can be displayed in the table.

In addition to the three datasets used in Sect. 6, we also validated the
efficiency of our algorithm on a large dataset, HELOC [7] (N=10459).
We used a 2.5GHz Intel Core i5 CPU (4 cores). Generating single CF
examples for the entire dataset took around 16 seconds. We found that
the optimization converges slower for datasets with many categorical
features, such as the German Credit Dataset. To speed up the genera-
tion process, we envision future research to apply strategies from syn-
thetic tabular data generation literature, such as smoothing categorical
features [44] and parallelism.

Generalizability to Other ML Models. The DECE prototype was
developed for differentiable binary classifiers on tabular data. How-
ever, DECE can be extended for multiclass classification by selecting a
target class manually or heuristically for each instance (e.g., the second
most probable class predicted by the model). For non-differentiable
models (e.g., decision trees) or models for unstructured data (e.g., im-
age and text), generating good counterfactual explanations is an active
research problem, and we expect to support this in the future.

R-counterfactuals and Exploratory Analysis. R-counterfactuals
are flexible instruments to understand the subgroup-level behavior of
an ML model. A general workflow for using it with DECE is as fol-
lows: 1) users start by specifying a subgroup of interest; 2) from the
subgroup visualization, users can view the class and impurity distribu-
tion along with each feature; 3) users can then choose an interesting or
salient feature and further refine the subgroup; 4) continue 2) and 3)
until they get a comparably “pure” subgroup, which implies that the
findings on this subgroup are salient and valid.

Improvements in the System Design. We expect to make further
improvements to the system design in the future. In the table view,
we plan to improve the design of subgroup cells for categorical fea-
tures. One direction is to provide suggestions for an optimal selection
of categories to refine the hypothesis. Besides, we plan to implement
more interactions to support the “focus + context” display in the in-
stance lens (e.g., focusing on multiple instances through brushing). In
the instance view, we plan to provide users with different levels of
interactions, e.g., allowing advanced users to directly manipulate the
feature weights in the distance metric.

Effectiveness of Counterfactual Explanations. In this paper, we
presented three usage scenarios to demonstrate how DECE can be used
by different types of users. However, we only conducted expert inter-
views with medical students who can be regarded as decision-makers.
To better understand the effectiveness of DECE and CFs, we plan to
conduct user studies by recruiting model developers, data scientists,
and layman users (for the instance view only). At the instance-level,
we expect to understand how different factors (e.g., proximity, diver-
sity, and sparsity) affect the users’ satisfaction with the CFs. And it is
interesting to know how well r-counterfactuals can support exploratory
analysis for datasets in different domains at the subgroup-level.
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