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ABSTRACT 

Objective: Correlated longitudinal and time-to-event outcomes, such as the rate of cognitive 

decline and the onset of Alzheimer’s disease, are frequent (co-)primary and key secondary 

endpoints in randomized clinical trials (RCTs). Despite their biological associations, these 

types of data are often analyzed separately leading to loss of information and increases in 

bias. In this paper, we set out how joint modelling of longitudinal and time-to-event 

endpoints can be used in RCTs to answer various research questions. 

Study Design and Setting: The key concepts of joint models are introduced and illustrated 

for a completed trial in amyotrophic lateral sclerosis.  

Results: The output of a joint model can be used to answer different clinically relevant 

research questions, where the interpretation of effect estimates and those obtained from 

conventional methods are similar. Albeit joint models have the potential to overcome the 

limitations of commonly used alternatives, they require additional assumptions regarding the 

distributions as well as the associations between two endpoints. 

Conclusion: Improving the uptake of joint models in RCTs may start by outlining the exact 

research question one seeks to answer, thereby determining how best to prespecify the model 

and defining which parameter should be of primary interest. 

 

KEYWORDS: Joint modelling, time-to-event, longitudinal, clinical trials, amyotrophic 

lateral sclerosis, informative censoring. 

 

RUNNING TITLE: Joint modelling in randomized clinical trials  
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HIGHLIGHTS  

 Time-to-event and longitudinal endpoints commonly co-occur in clinical trials 

 Joint modelling is a powerful approach to better understand the treatment effect 

 Joint models may help to address informative censoring in longitudinal endpoints 

 Efficiency gains can be achieved by simultaneous assessment of all available data 

 Limitations are increased complexity and the risk of defining an erroneous model 

 

WHAT IS NEW? 

 Joint modelling of time-to-event and longitudinal outcomes have been widely 

adopted in observational studies, and have been shown to be of benefit in trial 

settings, but their prospective use in clinical trial practice remains negligible 

 

 

 The output of a joint model can be used to address different research questions in 

clinical trials. Connecting joint models with clinically relevant estimands, thereby 

fine-tuning exactly which clinical question is being answered, could be an 

important step towards a better understanding of the interaction between treatment 

and the disease  

 

 Joint models have the potential to overcome the limitations of some commonly 

used conventional methods in clinical trials and may provide more efficient 

estimates of the treatment effect  
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1. Introduction 

Time-to-event and longitudinal outcomes are common endpoints in randomized clinical trials 

(RCTs). Clinical events may vary from the onset of a particular disease to the occurrence of 

disease-related events such as hospitalization, adverse reactions or death. As the time to reach 

the event may be considerable, it is common practice in RCTs to collect longitudinal 

information on intermediate outcomes such as physical functioning and quality of life 

alongside the time-to-event endpoint. In many instances, the longitudinal outcomes 

themselves are important (co-)primary or key secondary endpoints for evaluating the benefit 

of treatment. These outcomes are often strongly related to the event of interest; for example, 

cognitive decline and the onset of Alzheimer’s disease [1], or a poorer quality of life and an 

increased risk of death in oncology trials [2]. Nevertheless, time-to-event and longitudinal 

endpoints obtained in RCTs are often analyzed separately without consideration of their 

interrelationships. This may not only lead to a lower consistency and efficiency of estimating 

treatment effects in RCTs, but also to increased bias and suboptimal use of information [3, 4]. 

  

Combined assessment of longitudinal and time-to-event data using a joint model is a 

powerful approach to better characterize the effect of treatment [3-5]. Joint modelling refers 

to the simultaneous assessment of two or more outcomes while accounting for their 

interrelationships using a statistical model [6]. Typically, time-to-event endpoints are 

assessed using Cox models, whereas linear mixed effects models are commonly used for 

longitudinal data. In the joint modelling framework, the linear mixed model is linked (or 

joined) to the risk for the event. Joint models thereby explicitly address the association 

between the longitudinal and time-to-event endpoint [6]. One can use joint models not only to 

investigate how a longitudinal variable is related to the event of interest, but also utilize its 

value in RCTs to address informative missing data in longitudinal endpoints [7, 8], obtain 
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more efficient estimates of the treatment effect [2, 3, 9], or get a better understanding of the 

interaction between treatment and the disease [1, 10, 11]. 

 

Despite these clear benefits, and the widescale adoption of joint models in observational 

studies [12, 13], their prospective use in RCTs remains negligible. Table 1 provides an 

overview of the statistical analysis conducted in 61 consecutive RCTs published in three 

major medical journals. Only three RCTs (4.9%) considered a combined analysis of 

endpoints, though none of them used a joint model. The main barriers for implementation in 

RCTs may be attributed to perceived difficulties in the interpretation of effect estimates and 

the apparent complexity of the model [14, 15]. In this paper, therefore, we aim to explain the 

key concepts of joint models, and set out how joint modelling of longitudinal and time-to-

event endpoints can be used in RCTs to answer various research questions, illustrated for 

Amyotrophic Lateral Sclerosis (ALS).  

 

2.1 The valproic acid trial 

The valproic acid (VPA) study in ALS will be used to illustrate the joint modelling 

framework [16]. ALS is a progressive neurological disorder leading to severe muscle 

weakness and eventually death. Median survival is three to five years, but can range from a 

few months to over several decades [17]. The extent of physical functioning loss, and its rate 

of progression, are strongly related to survival time [17, 18]. Physical functioning is 

commonly quantified by a 12-item questionnaire, the ALS functional rating scale (ALSFRS-

R) [19], with lower scores reflecting poorer function. While improving overall survival is the 

ultimate objective [20-22], preventing functional loss may be of equal importance to patients. 

Moreover, one could hypothesize that a treatment that reduces or prevents functional decline 

would also prolong survival time. In Fig. 1 we provide the observed individual ALSFRS-R 
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trajectories and survival curves in each treatment arm of the VPA study. The primary 

objective was to evaluate the effect of VPA on overall survival compared to placebo, with the 

ALSFRS-R as key secondary endpoint. The trial followed a sequential design; it was stopped 

early for futility and possible harm due to VPA.  

 

2.2 The joint modelling framework  

In Fig. 2A we provide the ALSFRS-R scores for three placebo-allocated patients in the VPA 

study. As can be seen, the ALSFRS-R trajectories over time are strongly diverging: while one 

patient remains stable over the course of 12 months, the other patient deteriorates rapidly. 

This variability matches the variability observed in survival time, and the natural and 

biological association between the two endpoints [17]: a patient with minimal functional loss 

has, on average, a longer survival time than a patient with a more aggressive disease 

trajectory [9]. In the joint modelling framework, we explicitly model this connection between 

functional loss and the risk of death, and directly account for their interrelationship. As the 

name suggests, the joint model consists of two models: (1) a model that describes the patient-

specific ALSFRS-R trajectory over time, and (2) a model that describes the risk of death 

based on the modelled ALSFRS-R trajectories.  

 

This process is illustrated in Fig. 2A, in which the observed ALSFRS-R scores (dots) are 

used to estimate an underlying longitudinal trajectory for each individual patient (solid lines). 

These modelled trajectories are subsequently used as input, or covariate, in a second model to 

determine the risk of death (or probability of survival). As a consequence, the patient’s 

ALSFRS-R trajectory alters the instantaneous risk of death over time (Fig. 2B), which 

subsequently changes their probability of survival (Fig. 2C). In other words, the joint model 

links the ALSFRS-R model with the risk function that models survival time. N.B., Cox 
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models with time-varying covariates are frequently used as alternatives to joint models. Cox 

models, however, are not appropriate in these settings as they assume that (1) measurement 

of the longitudinal outcome is not affected by the occurrence of death, (2) the longitudinal 

outcome remains constant between two visits or until death, and (3) the longitudinal outcome 

contains minimal measurement error or biological variation [6]. The joint model improves on 

this by estimating an underlying ‘true’ trajectory for the longitudinal endpoint, estimating its 

value at the exact time of death and linking this to the risk function for the event of interest.  

 

2.3 Defining treatment response and the primary objective 

In RCTs, we can use a joint model to disentangle the effect of treatment [23]. In the VPA 

study, for example, treatment may reduce the progression rate on ALSFRS-R and, as a 

consequence, lead to an improvement in survival time. In addition, VPA treatment may also 

affect important prognostic mechanisms that are not captured by the ALSFRS-R (e.g., weight 

loss or cognitive decline). As such, treatment may improve survival through two distinct 

pathways: (1) a pathway that is driven by a change in ALSFRS-R, and (2) a pathway that is 

driven by a mechanism independent of the ALSFRS-R. From this it follows that we may use 

the same joint model to address different research questions regarding the effect of treatment, 

namely: 

  

1. What is the effect of treatment on ALSFRS-R progression? 

2. What is the overall effect of treatment on survival time?  

3. What is the combined effect of treatment on the ALSFRS-R and survival time, 

independent of their association? 
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Importantly, the answer to each of these questions may be different, possibly leading to 

different conclusions from the same study results. In the following sections, we will provide 

the joint model output for the VPA study, discuss how these different questions can be 

answered and how results differ from common conventional methods. The exact research 

question that is being answered closely coincides with the estimand framework [24], meaning 

‘what needs to be estimated to address the research question’. The estimand of an RCT 

defines, among other things, the primary outcome of interest (e.g., ALSFRS-R, survival, or 

both) and the strategy for handling events such as death [25]. As we will discuss, the above 

three questions loosely match the while-alive, treatment policy and composite estimand, 

respectively [26].  

 

3.1 Joint modelling of the VPA study 

In Table 2 we provide an overview of the variables required for the joint model; the data 

consist of two datasets: (1) ALSFRS-R data and (2) survival information. Defining the joint 

model starts with a linear mixed model for the ALSFRS-R data. To illustrate, we assume that 

VPA linearly reduces the ALSFRS-R progression rate, which can be modelled as 

 

𝜂𝑖(𝑡) =  𝛽0𝑖 + 𝛽1𝑖𝑡 + 𝛽2𝑖𝑡
2 + 𝛽3𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖𝑡 

𝛽0𝑖 = 𝛽0 + 𝜇0𝑖 

𝛽1𝑖 = 𝛽1 + 𝜇1𝑖    

𝛽2𝑖 = 0 + 𝜇2𝑖 

 

Here, 𝜂𝑖(𝑡) is the modelled ALSFRS-R score for the ith patient at time t, 𝛽0𝑖 the subject-

specific baseline score, and 𝛽1𝑖 and 𝛽2𝑖 a subject-specific quadratic trajectory over time 

(reflecting the individual curves in Fig. 2A). In addition, 𝛽0 is a common intercept for both 
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treatment arms (due to randomization); it reflects the average ALSFRS-R score at time of 

randomization; 𝛽1 is the average progression rate in the placebo arm in ALSFRS-R points per 

month; and 𝛽3 is the mean difference in progression rates between treatment arms; it reflects 

the treatment effect on the ALSFRS-R. 

 

The second step requires a model for the risk of death that contains the ALSFRS-R model as 

covariate. In addition, we need a term to model any additional effect of treatment on survival 

that is not captured by the ALSFRS-R. The survival model, or hazard function, can be 

defined as 

 

 𝐻𝑎𝑧𝑎𝑟𝑑𝑖 (𝑇𝑖𝑚𝑒) = ℎ0(𝑇𝑖𝑚𝑒) + exp[𝛾 ∙ 𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑖  +  𝛼 ∙ 𝜂𝑖(𝑡)] 

 

where ℎ0(𝑇𝑖𝑚𝑒) is a baseline risk function, 𝛾 the additional effect of treatment not captured 

by the ALSFRS-R, and 𝛼 the effect of ALSFRS-R on the risk of death. Similar to a Cox 

model, 𝛾 and 𝛼 are simply expressed as log hazard ratio. Exp (𝛼) indicates how the risk of 

death changes with each unit increase in ALSFRS-R. It is important to note that ηi(t) 

corresponds to the ALSFRS-R score predicted by the longitudinal model, and is not the 

actual observed ALSFRS-R score at time t. The baseline risk, ℎ0(𝑇𝑖𝑚𝑒), can be left 

unspecified similar to a Cox model, but could also be defined using parametric survival 

distributions. Leaving ℎ0(𝑇𝑖𝑚𝑒) unspecified avoids the need for assumptions, but makes 

obtaining absolute measures of risk less convenient [6, 15].  

 

After defining the ALSFRS-R and survival sub-models, these are then fitted simultaneously, 

thereby jointly optimizing all model parameters and adjusting for the interrelationship 

between ALSFRS-R and survival. As such, model parameters are estimated such that the 
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model optimally represents both the ALSFRS-R and survival data [6, 27]. This can be 

achieved by straightforward application of readily available software packages (e.g. the JM 

or JMBayes package in R [28], the jmxtst, merlin or stjm commands in Stata, or the JMfit 

macro in SAS [29]). The Supplementary Appendix provides the source code and datasets to 

replicate the model output for the VPA study presented in Table 3. As can be seen, the joint 

model output confirms the highly significant association between ALSFRS-R and survival 

time (-0.08 or a HR of 0.92, p < 0.001). In the following sections we will discuss how to 

address the three research questions outlined above.  

 

3.2 Question 1: What is the effect of treatment on ALSFRS-R? 

This question coincides with the “while alive” estimand where we are primarily interested in 

the patient’s functional decline during life. We aim to determine the between-group 

difference in mean rate of functional loss, as measured by the ALSFRS-R total score, 

between VPA and placebo, over the follow-up period or until death (whichever occurs first). 

From the model output in Table 1 it can be observed that the placebo group declined, on 

average, with 0.95 ALSFRS-R points per month. The time by treatment interaction reflects 

the mean difference in ALSFRS-R progression rates between placebo and VPA. Although 

not statistically significant (p = 0.34), we can see that the average progression rate in the 

VPA arm is 0.11 points per month faster than placebo (-1.06 vs. -0.95; a 11.6% increase), 

suggesting a potentially harmful effect of VPA.  

 

The key challenge addressed by the joint model here is that the ALSFRS-R scores for 

patients who die, do not exist, and are ‘truncated due to death’ [30]. Other methods that 

ignore the informative missing data often lead to biased results [31]. For example, limiting 

the analysis to only patients who survived until week 20 (N = 24, Fig. 1A) would result in an 
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average progression rate of -0.71 ALSFRS-R points per month in the placebo arm and -0.59 

in the VPA arm. As the missing data mechanism (death) is associated with the ALSFRS-R, 

such an analysis not only underestimates the actual progression rate by more than 25%, but 

also reverses the effect of VPA, which now seems beneficial due to the imbalance in death 

rate between treatment arms (Fig. 1B).  

 

3.3 Question 2: What is the overall effect of treatment on survival? 

In this setting, we are primarily interested in VPA’s overall treatment effect on survival, 

irrespective of the patient’s functional decline, and estimate a “treatment policy” estimand 

[24]. By substituting 𝜂𝑖(𝑡) in the hazard function (Section 3.1), it follows that VPA’s overall 

treatment effect on survival at time t is the effect mediated through the ALSFRS-R plus the 

effect not captured by the ALSFRS, or 𝛾 + 𝛼𝛽3𝑡, and reflects the log hazard ratio of VPA at 

a certain time point. Significantly, the hazard ratio of VPA is time-dependent in our model. 

This is a positive feature of joint models and distinctive from conventional survival models, 

which assume a constant treatment effect over time [1]. From Table 1 we can calculate that 

the hazard ratio of VPA is 1.80 at the beginning of the trial (i.e., exp (0.59 + −0.08 ∙

[−0.11 ∙ 0])), which increases to 2.15 at month 20 (i.e., exp (0.59 +∙ −0.08 ∙ [−0.11 ∙ 20])). 

Thus, the accelerated ALSFRS-R progression rate due to VPA treatment is reflected in the 

hazard, leading to an increasingly negative effect of VPA on survival over time. Moreover, 

we can calculate that the effect mediated through the ALSFRS-R is only 23% by month 20 

(i.e., −0.08 ∙ −0.11 ∙ 20/ log(2.15)), suggesting that VPA primarily affects survival through 

a mechanism not captured by the ALSFRS-R. 

 

Compared to conventional survival models, it seems straightforward that simply comparing 

the survival curves in Fig. 1B should also reflect the overall treatment effect 𝛵, or at least the 
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average effect on survival during follow-up. If we fit a Cox model, however, we obtain a HR 

of 1.68 for VPA; 10-20% smaller than estimated by the joint model. This is due to fitting an 

incorrect model, where the difference between a Cox and joint model depends on the degree 

of association between the two endpoints [3, 4]. This has important consequences for RCTs: 

detecting a hazard ratio of 1.68 with 80% power requires 388 patients (assuming a survival 

probability of 70%), whereas detecting a hazard ratio of 1.80 requires only 302 patients [32]; 

a difference in sample size of 22.1%.  

 

3.4 Question 3: What is the combined effect of treatment on ALSFRS-R and survival? 

Finally, in some settings, rather than having particular interest in one endpoint, we could also 

state two co-primary endpoints without a specific preference for either. In this setting, ‘trial 

success’ could be defined as a change in either the longitudinal and/or time-to-event 

endpoint, which coincides with a composite estimand. In a joint model, this could be 

accommodated by comparing a model with and without the treatment terms. In our example, 

we could compare a model where we remove the terms 𝛽3 and 𝛾 (Table 3) versus a model 

that includes these terms. This results in an ANOVA-like p-value, which tests whether the 

combined effect of treatment improves survival and/or ALSFRS-R, independent of their 

association (see Supplementary Appendix for an example) [9]. 

 

This approach is similar to combining both endpoints into a composite endpoint and testing 

whether this differs between treatment arms. An example is the Combined Assessment of 

Function and Survival [33]; the patient who died first is ranked worst, whereas the patient 

who survived and had the least ALSFRS-R loss, ranked best. In contrast to the joint model, 

however, such endpoints use only one of the two endpoints per patient (if a patient dies, his 

or her longitudinal data is disregarded). Moreover, if 20% of the patients die at the end of the 
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trial, 80% of the ranking scores are based on the longitudinal endpoint. This becomes 

particularly inefficient if treatment affects only one of the two endpoints [9, 26].   

 

4. Final remarks  

In this paper, we have illustrated how joint models can address different research questions in 

RCTs and have the potential to overcome the limitations of some commonly used 

conventional methods. Despite the considerable number of publications, and the common co-

occurrence of correlated time-to-event and longitudinal data in RCTs, the uptake of joint 

modelling in actual trials remains negligible [34]. As illustrated in this paper, the 

interpretation of joint model parameters and those obtained by conventional methods are very 

similar, can be linked to clinically relevant research questions and, as shown by others, have 

nowadays been implemented in many software solutions [15].  

 

The main challenges when formulating a joint model are the assumptions required regarding 

the distributions as well as the associations between the two endpoints [3, 35]. As with any 

other statistical model, attention will need to be given to potential biases due to the 

inaccuracy of what we assume, and how this could impact our estimate of the treatment effect 

[34]. At the design stage of a trial it would be important, for example, to evaluate the impact 

of changing the trajectory of the longitudinal outcome, the survival pattern, the correlation 

structure between patients, or how treatment interacts with each endpoint [35].  

 

Many of these considerations start with the exact research question one seeks to answer. 

Positioning the joint model into the estimand framework, therefore, may better guide one in 

defining the exact research question, in how best to prespecify the analysis, and in 

determining which parameter should be of primary interest. This decision process should be a 
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collaborative effort between experts, statisticians, clinicians, and regulatory scientists to 

increase mutual understanding of joint models, further mediate their implementation in real-

world settings and, ultimately, better utilize the value of joint modelling in clinical trials.  
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Table 1. Uptake of joint modelling in 61 consecutive clinical trials.  

Characteristic No. of clinical trials 

(N = 61) 

Primary endpoint of clinical trial 

   Time-to-event 

   Longitudinal 

 

49 (80%) 

12 (20%) 

Time-to-event analysis 

   Logrank test 

   Stratified logrank test 

   Cox model with covariate adjustment 

   Mediation analysis with longitudinal outcome 

 

26 (43%) 

16 (26%) 

17 (28%) 

2 (3%) 

Longitudinal analysis  

   Mixed model for repeated measures  

   Linear mixed model  

   Simple regression 

   Composite endpoint with time-to-event 

   Not reported 

 

25 (41%) 

11 (18%) 

22 (36%) 

1 (2%) 

2 (3%) 

Joint modelling of time-to-event and longitudinal data, 

Yes 

0 (0%) 

Overview of statistical strategies applied in consecutively randomized clinical trials, 

published between January 1, 2019 and December 31, 2019 in the NEJM, Lancet and JAMA, 

that reported the results on both endpoints in the publication; study selection is described in 

the Supplementary Appendix.  
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Table 2. Summary of the datasets required to fit a joint model in the VPA study 

Dataset Description 

1. Longitudinal dataset Number of rows is equal to sample size times number of 

visits 

    i. Subject ID Identifier for individual patient 

    ii. Visiting time Time of visit in months from baseline, options: 0, 2, 4, 8, 

12, 16, 20 

    iii. ALSFRS-R total score ALSFRS-R total score at visit 

    iv. Treatment Treatment indicator, options: placebo, valproic acid 

  

2. Time-to-event dataset Number of rows is equal to sample size 

   i. Subject ID Identifier for individual patient 

   ii. Survival time Time in months between baseline and death or last follow-

up 

   iii. Vital status Status indicator, options: dead, alive 

   iv. Treatment Treatment indicator, options: placebo, valproic acid 
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Table 3. Joint model output of the Valproic Acid study. 

Parameter Estimate 95% CI P-value 

   ALSFRS-R model    

      Intercept (𝛽
0
) 40.2 39.3 to 41.1 <0.001 

      Time (𝛽
1
) -0.95 -1.11 to -0.79 <0.001 

      Time x Treatment (𝛽
3
) -0.11 -0.33 to 0.11 0.34 

   Survival model    

      Log HR Treatment (𝛾) 0.59 -0.12 to 1.29 0.10 

      Log HR ALSFRS-R (𝛼) -0.08 -0.12 to -0.04 <0.001 

The exact model specifications are given in the Supplementary Appendix. Abbreviations: 

ALSFRS-R = Amyotrophic Lateral Sclerosis Functional Rating Scale – Revised; HR = 

hazard ratio. 
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Figure 1 title. Functional loss and survival in a randomized controlled clinical trial for ALS. 

Figure 1 legend. The observed individual ALSFRS-R trajectories and the Kaplan-Meier 

curves of each treatment arm in a randomized, placebo-controlled trial with valproic acid in 

patients with ALS [16]. The original trial randomized 163 patients; as the trial stopped early, 

nine patients, with less than 4 weeks of follow-up time, were censored administratively and 

excluded from the current analysis.  

 

Figure 2 title. The joint modelling framework illustrated for amyotrophic lateral sclerosis.  

Figure 2 legend. (A) Joint models estimate an underlying trajectory (solid line) based on the 

observed longitudinal outcomes (dots). These modelled trajectories are then linked with the 

patient’s hazard for the event (B), and thereby directly associated with his or her probability 

of survival during follow-up (C). 
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HIGHLIGHTS  

 Time-to-event and longitudinal endpoints commonly co-occur in clinical trials 

 Joint modelling is a powerful approach to better understand the treatment effect 

 Joint models may help to address informative censoring in longitudinal endpoints 

 Efficiency gains can be achieved by simultaneous assessment of all available data 

 Limitations are increased complexity and the risk of defining an erroneous model 
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