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It is indisputable that clinical medicine has entered the age of
big data. Newer, better prediction methods, such as neural net-
works, random forests, and other algorithms, often categorized

as machine learning (ML), can
probe large-scale clinical data
sets to discover predictive fea-
tures unavailable to their more

traditional counterparts. However, when Khera et al1 pit 3 of
these algorithms against the most standard generalized linear
model, logistic regression, to predict death after acute myocar-
dial infarction, none of the ML algorithms emerge as a clear win-
ner. Two of the 3 ML algorithms improved discrimination by a
slim margin and yielded “more precise calibration across the risk
spectrum.”1 However, these improvements are unlikely to be
clinically meaningful, and it’s unclear whether they would be
sufficienttojustifythecorrespondinglossof interpretability.Fur-
thermore, 1 ML approach (a neural network) performed worse
than logistic regression. The data set in question is undeniably
big, at least in sample size. Khera et al1 draw on an American
College of Cardiology registry that contains more than 750 000
records; therefore, at first glance, it appears that the promise of
using ML to harness big data is not being realized. What can ex-
plain this disconnect, and does it suggest that ML is more hype
than substance?

This is not the first time that ML has offered only modest
or no improvement of traditional regression models in clini-
cal medicine. For every study in which it yielded superior re-
sults, there are others in which the gains disappoint. Indeed,
the balance of evidence suggests that for typical clinical pre-
diction tasks, wherein predictions are based on a modest num-
ber of clinical variables, ML algorithms are on par with logis-
tic regression.1,2 Electronic health records (EHRs) contain
thousands of potential predictor variables, so we might ex-
pect ML algorithms to fare better; yet to date traditional ap-
proaches still appear to hold their own. For the prediction of
death, readmission, and length of stay from the EHR, for ex-
ample, a logistic regression model with access to the same pre-
dictors was competitive with deep learning, with differences
between them often falling within the margin of error.3 In prin-
ciple, ML models are more flexible than logistic regression and
other generalized linear models: they can more accurately ap-
proximate the true relationship between predictors and out-
come when data are plentiful. In practice, however, logistic
regression is a tough baseline to beat.

Although ML has been underwhelming for many predic-
tion tasks, it has been a profound advance for others. For ex-
ample, in medical image processing, prediction models have
reached levels of performance unimaginable only a decade ago,

largely because of the success and popularization of deep con-
volutional neural networks. Machine learning had exceeded
human performance when classifying everyday images in 2015,
and only 2 years later, a convolutional neural network model
was found to perform as well as experienced dermatologists
when identifying skin lesions.4 Similar findings have been re-
ported across a range of imaging-intensive medical special-
ties, including ophthalmology, pathology, and radiology. Within
the past year, an ML algorithm was trained to read mammo-
grams more effectively than radiologists.5 For these prob-
lems, in stark contrast to the prediction tasks previously dis-
cussed, the role of ML is not to make predictions better but
rather to allow prediction at all. Thus, there is no comparison
to logistic regression because linear models are entirely inad-
equate for image processing. Medical images, and indeed all
natural images, are composed of millions of pixels intercon-
nected in a rich, complex spatial structure, and any given pixel
has little to no meaning in isolation. Consequently, ML meth-
ods are required to decipher them.

Although image processing might be the best known suc-
cess of ML thus far, it is far from the only one. Machine learn-
ing is commonplace in digital health applications, in which
wearable devices continuously generate high-dimensional,
highly structured time series measuring physical activity and
a range of physiologic parameters. Much like pixels in an im-
age, individual samples from a wearable device are part of a
rich temporal structure, and as a result, deep neural net-
works are state of the art for many digital health prediction
tasks, such as human activity recognition. Similarly, deep neu-
ral network models are often the accepted method for pro-
cessing physiologic time series recorded in the laboratory or
clinic, a notable example being electroencephalography.6 In
natural language processing, in which ML models such as the
support vector machine have long outperformed traditional
models, a milestone has been reached: deep learning models
now exceed human-level performance in a variety of tasks, in-
cluding question answering. These models are the current state
of the art for processing biomedical and clinical text7 and have
begun to appear in the clinical literature. In addition, an in-
creasing number of clinical prediction tasks are based on a fu-
sion of modalities, such as images combined with EHR
variables,8 thus necessitating a ML approach. In each of these
examples, as with image processing, ML is not just an incre-
mental improvement but is often the difference between an
algorithm that is useful and one that is not.

What do these success stories have in common? In the cases
in which ML has been most impactful, the data are high di-
mensional, highly structured, and difficult to summarize
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without substantial loss of information. In a word, they are
complex. In the cases in which it has been least impactful, there
tend to be fewer predictors, and unlike in images or text, in-
dividual predictors more often correspond to distinct mea-
surements or attributes. The characteristics of the data at hand
are therefore central when developing a prediction model; it
is important to choose a modeling approach that is well
matched to these characteristics. To aid in the initial steps of
this process, we propose the following rule of thumb: as the
complexity of the underlying data increases, so too does the
value of ML (Figure).

When working with images, text, or time series, ML is al-
most sure to add value, whereas when working with a fewer,
weakly correlated clinical variables, logistic regression is likely
to do just as well. In the substantial gray area between these
extremes, judgment and experimentation are required. The
work by Khera et al1 falls in this gray area and sheds light on
the potential that ML can offer: when correctly applied, it might
lead to more meaningful gains in calibration than discrimina-
tion. This is an important finding, because the role of calibra-
tion is increasingly recognized as key for unbiased clinical de-
cision-making, especially when threshold-based classification
rules are used. The correctly applied caveat is also important;
unfortunately, many developers of ML models treat calibra-
tion as an afterthought.

The value in complexity principle illustrated in the Figure
is likely an oversimplification and should be reevaluated as new
algorithms are developed and data resources continue to ex-
pand. Research into ML is progressing at a rapid pace, and sev-
eral areas in current development are directly relevant to health
care. Particularly relevant might be the ongoing work in repre-
sentation learning for EHR data elements, which aims to nu-
merically encode relationships between medical codes and/or
concepts and may continue to increase the value of deep learn-
ing for EHR-based prediction tasks.9 Despite these caveats, we
believe that this rule of thumb might be useful in guiding the
selection of mathematical models for the task at hand and set-
ting realistic expectations for possible improved performance.

Provided the model evaluation is conducted properly, there
is little harm in exploring whether an artificial neural net-
work—or any other ML algorithm—may improve on logistic re-
gression for a given clinical prediction task. However, mov-
ing away from the generalized linear model is not without cost.
Although feature attribution methods for ML models con-
tinue to improve, linear models remain more interpretable

because they are simple and familiar to most practitioners and
researchers. Complex models also tend to be more compli-
cated to implement, and they are undoubtedly more costly to
develop, partly because development requires different skills
and software compared with the more traditional approach.
As the results presented by Khera et al1 illustrate, the gener-
alized linear model is powerful, and only rarely is there a
price—a substantial loss of performance—for choosing it. When
developing a prediction model, we should choose the sim-
plest tool that will do the job.10 By honing our intuitions about
the likely value added by ML, we can maximize our efforts and
sacrifice the simplicity and interpretability of the linear model
only when necessary.

Recent feats of ML in clinical medicine have seized our col-
lective attention, and more are sure to follow. As medical pro-
fessionals, we should continue building familiarity with these
technologies and embrace them when benefits are likely to out-
weigh the costs, including when working with complex data.
However, we must also recognize that for many clinical pre-
diction tasks, the simpler approach—the generalized linear
model—may be all that we need.
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Figure. Examples of the Value Added by Machine Learning
When Applied to Data With Increasing Complexity
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As the complexity of the underlying data increases, so too does the probable
value added by machine learning. EHR indicates electronic health record.
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