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Researchers often face the problem of how to address missing data. Multiple imputation is a popular approach,
with multiple imputation by chained equations (MICE) being among the most common and f lexible methods for
execution. MICE iteratively fits a predictive model for each variable with missing values, conditional on other
variables in the data. In theory, any imputation model can be used to predict the missing values. However,
if the predictive models are incorrectly specified, they may produce biased estimates of the imputed data,
yielding inconsistent parameter estimates and invalid inference. Given the set of modeling choices that must be
made in conducting multiple imputation, in this paper we propose a data-adaptive approach to model selection.
Specifically, we adapt MICE to incorporate an ensemble algorithm, Super Learner, to predict the conditional
mean for each missing value, and we also incorporate a local kernel-based estimate of variance. We present
a set of simulations indicating that this approach produces final parameter estimates with lower bias and better
coverage than other commonly used imputation methods. These results suggest that using a f lexible machine
learning imputation approach can be useful in settings where data are missing at random, especially when the
relationships among the variables are complex.

machine learning; missing data; missingness at random; multiple imputation by chained equations; simulation

Abbreviations: BLR, Bayesian linear regression; CART, classification and regression trees; LASSO, least absolute shrinkage
and selection operator; LOESS, locally estimated scatterplot smoothing; MICE, multiple imputation by chained equations; PMM,
predictive mean matching.

Missing data are a common problem in quantitative
research, and improper handling of missing data can lead
to biased parameter estimates, decreased statistical power,
and less generalizable findings (1). A range of approaches
are available to address missing data. A straightforward
approach, one that is often the default approach of many
statistical analysis packages, is to simply remove all rows
of data that have any missing values (listwise deletion).
It is well-established, however, that such an approach is
suboptimal: It will result in a substantial loss of power if
there is a large number of missing values, and it can lead to
biased parameter estimates when the data are not missing
completely at random (2).

An alternative solution is to replace missing values with
imputed values. Imputation maintains the full sample size
and requires the less stringent assumption that data are

missing at random—that is, missingness that is random
after conditioning on the observed values of other variables.
Multiple imputation is often preferred over single imputa-
tion, because, unlike single imputation, it accounts for the
uncertainty involved in imputing data. Multiple imputation
uses the distribution of the observed data to estimate a set
of plausible values for the missing data and uses variability
in the set of estimated values to calculate more appropriate
standard errors for parameter estimates (3).

Even when the missing-at-random assumption of multiple
imputation is met, consistent parameter estimates and valid
confidence intervals still depend on the correct specification
of the imputation model (4, 5). Given the set of modeling
choices that need to be made, we propose a data-adaptive
ensemble learning approach to better detect and capture
complex relationships in the imputation models and mitigate
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issues related to misspecification error in the imputed val-
ues (6). Specifically, we adapt the widely used Multiple
Imputation by Chained Equations (MICE) package (7) in R
(R Foundation for Statistical Computing, Vienna, Austria)
to incorporate the Super Learner (8, 9) stacking ensemble
algorithm to predict the conditional mean for each miss-
ing value and a local kernel-based estimate of variance.
Super Learner uses k-fold cross-validation to estimate the
performance of multiple base learning models and creates
an optimal weighted average of the models using the test
data performance. Super Learner has been proven to be
asymptotically at least as accurate as the best-performing
individual prediction algorithm tested in the ensemble (8).
In this paper, we compare the implementation of MICE
with Super Learner to 2 standard approaches: MICE with
Bayesian linear regression (BLR) and MICE with predictive
mean matching (PMM). We present a series of simulation
results and an applied example using the National Crime
Victimization Survey (10).

The present study is focused on multiple imputation, an
increasingly popular technique for dealing with missing
data; however, multiple imputation is just one approach
among several for estimating parameters when data are
missing at random. Two other common methods are inverse
probability weighting (11) and likelihood-based approaches
(12). In-depth reviews of these approaches and their compar-
ative value can be found elsewhere (13, 14). In brief, inverse
probability weighting involves reweighting each complete-
case observation by the inverse of its estimated probability
of being complete given predictors (15). Likelihood-based
approaches, on the other hand, fit the statistical model of
interest directly from the observed data without deleting
observations. A common likelihood approach is maximum
likelihood via expectation maximization (16). The expec-
tation maximization algorithm iterates between an E-step,
computing the expected value of the full data log-likelihood
given the observed data and a set of initial parameter esti-
mates, and the M-step, which performs maximum likeli-
hood estimation of the parameters using the augmented
log-likelihood obtained from the E-step.

Unlike weighting or likelihood-based approaches, mul-
tiple imputation involves generating multiple data sets in
which missing values are imputed or filled in based on the
distribution of observed data. There are a number of methods
for implementing multiple imputation, but all involve 3 basic
steps. First, the researcher generates m imputed data sets by
replacing missing data in each variable with values randomly
drawn from a posterior predictive distribution of the missing
data conditional on the observed data m times. Second, the
researcher performs the intended statistical analyses on each
of the imputed data sets, thereby obtaining m estimates and m
standard errors. Finally, the estimates and standard errors are
combined using Rubin’s rules (17), which involves pooling
the m parameter estimates and combining the conventional
sampling variance (within-imputation variance) with the
additional variance generated by the missing data (between-
imputation variance). By accounting for the uncertainty of
the imputations, multiple imputation produces more accu-
rate standard errors than single imputation. If there is limited
information in the observed data used in the imputation

model, the imputations will be highly variable, leading to
high standard errors in the analyses; if the observed data are
highly predictive of the missing values, the imputations will
be more consistent across imputations, resulting in smaller
standard errors (3).

The 2 general approaches to implementing multiple impu-
tation are joint modeling and fully conditional specification
or MICE (18, 19), the latter of which is the focus of the
present paper. Joint modeling assumes a multivariate normal
distribution, and imputations are generated as draws from
the fitted distribution. MICE, on the other hand, imputes
missing values using separate univariate conditional dis-
tributions for each incomplete variable given all the oth-
ers, cycling iteratively through each incomplete variable.
Specifically, MICE proceeds as follows: First, the miss-
ing values for each variable are imputed using a simple
approach such as mean imputation; second, one variable
at a time, the imputed values are set back to missing and
the missing values are predicted using the observed and
imputed values for the variables in the data set and a user-
specified imputation model. One iteration consists of 1 cycle
through each variable in the data set; multiple cycles are
performed.

The MICE algorithm requires model specification for
each incomplete variable as well as the selection of the
predictors to be included in the variable imputations. Stan-
dard practice suggests that the imputation model should
include all variables that will be included in the analysis
model, as well as all variables thought to be predictive of
each imputed variable so as to make the missing-at-random
assumption more plausible (12). In practice, however, with
high-dimensional data sets, the inclusion of variables be-
yond those used in the analysis is not always feasible
(20, 21).

With respect to the imputation models, model misspecifi-
cation can lead to biased estimates. The threat of bias must
also be balanced with variance concerns. More complex
and flexible algorithms—for example, random forest—tend
to produce higher variance and less bias and are prone to
overfitting the data, while simpler algorithms with more
rigid structure tend to produce lower variance at the expense
of accuracy because of underfitting. Because the true func-
tional form of the imputation model is rarely known, the
researcher must make a decision about how to balance bias
and variance in their estimation procedure. One advantage of
the Super Learner algorithm is that the researcher can supply
the ensemble with a range of diverse base learners, including
simple parametric models as well as flexible data-adaptive
algorithms.

There have been some prior efforts to incorporate decision
trees, a popular class of machine learning algorithms, into
multiple imputation so as to better model nonlinear rela-
tionships (22, 23), and results have generally been promis-
ing. Implementations of classification and regression trees
(CART) (24) and random forest (25) are both now available
in the MICE R package (7), but more general implemen-
tations of machine learning algorithms for imputation have
focused on producing only single imputations (6). To our
knowledge, the present paper is the first to incorporate an
ensemble machine learning approach to multiple imputation.
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METHODS

The MICE algorithm is modular by design. That is,
MICE requires a method of producing a random imputed
value, but this method is left to the user to define. A good
method for MICE would produce a sampling distribution
for each missing value that reasonably reflects available
information about the conditional expected value as well as
the uncertainty inherent to the estimate. For example, BLR
samples from a normal distribution with mean and variance
determined by the regression model; PMM samples a value
from a pool of neighbors who have a similar conditional
expectation. In our simulations, we compare MICE imputa-
tion using Super Learner to MICE using PMM and MICE
using BLR. We briefly describe each approach below.

MICE with BLR and PMM

BLR is a common and straightforward approach for mul-
tiple imputation of continuous variables with a normal dis-
tribution (6, 12). In the MICE R package, for example, the
normal method of imputation (“norm” function) is based
on a BLR involving first regressing z on x to estimate
coefficients, β, and then drawing from the posterior pre-
dictive distribution of β at random to produce β∗. This set
of coefficients is then used to predict values for missing
observations of z. However, for nonnormal variables and
nonlinear relationships, linear regression may fail to produce
accurate predictions.

PMM is a semiparametric imputation approach. PMM
samples values from the observed data to impute missing
values (26). For a variable with missing values, z, and a
set of predictor variables, x, PMM performs a simple linear
regression of z on the set of predictor variables, x, to estimate
a set of coefficients, β. It then draws from the posterior
predictive distribution of β at random and uses this new set
of coefficients, β∗, to predict all values of z, both missing and
observed. For each missing value, PMM finds the n observed
z whose predicted values are closest to the predicted value of
missing z and assigns the observed value of a random draw
of these values to the missing value. This is repeated for each
complete data set.

One of the benefits of PMM over standard methods based
on linear regression is that the distribution of the imputed
data will better reflect the distribution of the observed data,
be it skewed, bounded, discrete, etc. PMM does not rely on
formal theory but has generally performed well in simula-
tions (27). However, the method also has limitations. It will
be less successful than a parametric approach when predict-
ing values where the observed data are sparse or nonexistent
(28). PMM relies on drawing a nearest neighbor and thus
cannot extrapolate beyond the range of data or interpolate in
areas of the data structure where there are no observations
from which to choose (29). Similarly, small sample sizes
can pose a challenge, as there are fewer observed data from
which to draw (30).

Super Learner

Super Learner is an ensemble machine learning method
that constructs a predictive model from a weighted combi-

nation of candidate base learner algorithms. The base algo-
rithms are user-specified and may include any number of
semiparametric and nonparametric models, such as general-
ized additive models (31), neural networks (32), and random
forest (25), as well as parametric models such as logistic or
linear regression. Super Learner uses k-fold cross-validation
to estimate the predictive performance of each of the base
learner algorithms. Super Learner then finds the optimal
weighted combination of base learners via a second “meta-
learning” step that minimizes the cross-validated error with
respect to a user-defined loss function such as prediction
error or negative log-likelihood. This weighted combina-
tion of algorithms is used to generate a “super” prediction
function (predicted values are generated on the out-of-fold
predictions from each of the base models) and combined via
a weighted average applied to the full data set.

This process optimizes the bias-variance trade-off for a
given prediction question and set of algorithms, and theo-
retical results have shown that the weighted collection of
algorithms will perform asymptotically as well as or better
than any single candidate algorithm (8). The recommenda-
tion is to supply diverse algorithms that represent a range of
algorithm flexibility along with options to test for higher-
order interactions among the variables, polynomials and
other transformations, and screener algorithms (e.g., least
absolute shrinkage and selection operator (LASSO) (33)) to
remove variables and transformations that do not contribute
meaningfully to the prediction model.

Variance estimation

Super Learner models are unable to provide standard
errors for their predictions due to their semiparametric con-
struction. To create a sampling distribution for imputed
values centered around a Super Learner prediction, we use
a local estimate of variance. Local imputation methods, as
introduced in the multiple imputation context by Titterington
and Sedransk (34) and further developed by Aerts et al. (35),
like PMM, relax distributional assumptions. Local imputa-
tion methods work by sampling from a kernel-based estimate
of the underlying distribution or by taking a smoothed local
bootstrap sample.

Local imputation methods may assume that conditional
distributions are locally normal, but more flexibly reflect
nonconstant errors. For our purposes, this is important in
situations where the variability of an imputed variable is
nonconstant across values of another associated variable. In
contrast, BLR assumes a constant variance for random error,
which is utilized in its sampling distribution for imputed
values, and a violation of this assumption may lead to
inaccurate predictions. PMM can be interpreted as a special
case of local imputation: A uniform kernel with a given
bandwidth is chosen to put equal weight on some number of
the closest neighbors, and then imputed values are sampled
from the empirical density function.

Combining Super Learner and MICE: SuperMICE

We created a new R package for incorporating the Super
Learner algorithm into MICE (SuperMICE). The package is
available on GitHub (36).
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We take a semiparametric approach to imputing missing
data using Super Learner and MICE, generating values
for missing data from a normal distribution with a mean
determined from a Super Learner model and a local estimate
of the variance following the strategy laid out by Aerts et al.
(35).

Consider a data set, X = (x1, x2, . . . , xp), of length n
binary and numerical vectors where values may be missing
in any of the variables. The ordering of the variables is
not important. In addition, define an n × p binary matrix,
δ = [δij], where

δij =
{ 0 xij is missing;

1 xij is observed.

Furthermore, let L be a library of predictive algorithms with
cardinality q. We denote the iteration of the algorithm by
0 ≤ t ≤ T . Finally, we will denote the kth data set in the
tth iteration of the algorithm by the superscript (k, t). In the
remainder of this section, we describe the steps of MICE
using Super Learner.

Step 1: initialize. Create m identical data sets, X(1,0),
X(2,0), . . . , X(m,0), as follows. For each missing value, δij =
0, set xij = 0 and then impute using the mean (round to 0
or 1 if binary) of the observed values for the corresponding
variable, xi. That is,

x(k,0)
ij =

∑n
j=1 xijδij∑n

j=1 δij
.

Step 2: predict. For data set 1 ≤ k ≤ m and for variable
1 ≤ j ≤ p, such that j has at least 1 missing value, fit each
algorithm l ∈ L, predicting x(k,t)

j from X(k,t)
(j) , the data with

j removed. The Super Learner (SL) predictions are given
by the weighted sum of predictions generated by the set of
algorithms in the library

x̂(k,t)
j = �̂

(k,t)
SL,j

(
X(k,t)

(j)

) =
q∑

l=1

α̂
(k,t)
jl �̂

(k,t)
jl

(
X(k,t)

(j)

)
,

where �(· ) is a function returning predictions from an algo-
rithm and the set of estimated weights, α̂j = (α̂j1, α̂j2, . . . ,
α̂jq) such that

∑q
l=1 α̂l,j = 1 are obtained by minimizing the

cross-validated risk (for details, see Polley and van der Laan
(37)).

Step 3: impute. We use a semiparametric approach to
impute the missing data. In the binary case, values are sam-
pled from a Bernoulli distribution with probabilities equal
to the Super Learner predictions. For continuous variables,
missing-data values are randomly sampled from a normal
distribution with mean given by the Super Learner predic-
tion and a local estimate of variance. The local variance
is computed as a weighted variance giving more weight to
observations with predicted values similar to the missing
value and to observations in areas of greater missingness.

Specifically, for a kernel function Kh(· ) with bandwidth h,
the weights are computed as wij(x) = δijwij(x)/π̂(x), where

wij(x) = Kh(x − x̂(k,t)
ij )∑n

i=1 Kh(x − x̂(k,t)
ij )

are the usual Nadaraya-Watson weights (38, 39) and π̂(x) =
Kh(x − x̂(k,t)

ij )δij/
∑n

i=1 Kh(x − x̂(k,t)
ij ) is a local estimate of

missingness. The choice of bandwidth is important for pro-
ducing a good result. Aerts et al. (35) propose a bandwidth
selection method using the jackknife (40), while we have
found that a bandwidth that captures 2% of observed values
within 1 standard deviation under the gaussian kernel per-
forms well. This remains an area of active research.

The weighted variance can then be calculated as σ̂
2(k,t)
ij =∑n

i=1 wij
(
x̂(k,t)

ij

)(
x̂(k,t)

ij − x̂∗(k,t)
ij

)2
/
∑n

i=1 wij(x̂ij), where x̂∗
ij is

the weighted mean. Finally, each missing value is sampled
from the corresponding distribution,

x(k,t+1)
ij ∼ N

(
x̂(k,t)

ij , σ̂2(k,t)
ij

)
.

For T iterations (usually 10–20 is sufficient (7)), repeat steps
2 and 3.

Step 4: estimate. Estimation and pooling of the estimates
and standard errors from each of the m imputed data sets
occurs following standard MICE procedure: 1) statistical
analyses (e.g., regression) are carried out on each imputed
data set as would have been done if the data had been
complete, and 2) estimates from the analyses are then com-
bined via Rubin’s rules (17). That is, if Q represents the
quantity of interest and [Q̂(j), U(j)], j = 1, ..., m, repre-
sents the set of parameter estimates and standard errors
from each of the imputed data sets, the overall combined
parameter estimate is given by the simple average Q =
1
m

∑m
j=1 Q̂j and the total variance is defined as T = U + B +

B/m, where U = 1
m

∑m
j=1 Uj is the within-imputation vari-

ance and the between-imputation variance is calculated as

B = 1
m−1

∑m
j=1 [Q̂j − Q]

2
.

SIMULATIONS

Simulation design

We conducted 4 simulations (n = 1,000) to compare
MICE with Super Learner to MICE using PMM and MICE
using BLR. We conducted each of the simulations using 4
sample sizes (n = 100, n = 400, n = 700, and n = 1,000),
and 5 levels of missingness (10%, 20%, 30%, 40%, and
50%). Our Super Learner library in the first 3 simulations
included the global mean, the general linear model, locally
estimated scatterplot smoothing (LOESS), the generalized
additive model, and neural networks; we exchanged LOESS
for linear discriminant analysis in the fourth simulation
to better accommodate binary variables. We generated 30
imputed data sets (m = 30) for each scenario and ran MICE
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A) B)

C) D)

–3.0 –1.5 0.0
X1 X1

X1 X1

X 2
X 2X 2

X 2

1.5 3.0 –1.0
–1.5

0.0

3.0

6.0

1.5

4.5

–0.5 0.0 0.5 1.0
–3.0

0.0

3.0

6.0

9.0

12.0

0.0
0.0

6.0

12.0

1.0

0.0 0.2 0.5 0.8 1.0

Status

Observed
Missing

0.0

18.0

2.0 4.0 6.0 8.0 10.0

Figure 1. Examples of values simulated for X1 and X2 in 4 simulations comparing multiple imputation by chained equations (MICE) with Super
Learner to MICE using predictive mean matching and MICE using Bayesian linear regression (i.e., quadratic relationship, lognormal relationship,
zero-inf lated Poisson distribution, and binary relationship). Missing values, indicated by multiplication signs (×), increase (or decrease, in the
case of simulation 3) in probability with increasing values of X1.

for 10 iterations, following the suggestion of van Buuren and
Groothuis-Oudshoorn (7).

In each of the simulations, X2 contains missing data, and
the probability of missing values increases with the value
of X1. Specifically, Pr(δi,2 = 0) = Pr(X1 < xi,1). Thus,
we have generated scenarios in which the data are miss-
ing at random. There are systematic differences between
the missing and observed values, but these can be entirely
explained by other observed variables. Figure 1 displays the
relationships between X1 and X2 in each of the scenarios.

In the first simulation, we create a quadratic relationship
between X1 and X2 taking the following form:

X2 = 1 + X1 + X2
1 + ε1

Y = X1 + X2 + ε2,
where X1 ∼ uniform (−3, 3)
εi ∼ N (0, 1) for i = 1, 2.

(1)

In the second simulation, we create a lognormal relationship
between X1 and X2 taking the following form:

X2 = eX1+ε1

Y = X1 + X2 + ε2,

where X1 ∼ uniform (0, 1)
εi ∼ N (0, 1) for i = 1, 2.

(2)

The third simulation samples values from a zero-inflated
Poisson distribution parameterized by the value of X1 as
follows:

X2 | X1 ∼
{

0 with Pr
(
e−X1

)
Poisson (λ = X1) with Pr

(
1 − e−X1

)
Y = X1 + X2 + ε,
where X1 ∼ uniform (0, 5)
ε ∼ N (0, 1) .

(3)
Finally, the fourth simulation is a binary relationship and
takes the following form:

Y = X1 + X2 + ε,
where X1 ∼ uniform (0, 1)
X2 ∼ Bernoulli ( |2X1 − 1| )
ε ∼ N (0, 1) .

(4)

For each scenario, we imputed data using MICE with
BLR, PMM, and Super Learner. We then fitted a linear
regression model of the form Y = X1+X2 using the imputed
data sets and estimated the regression coefficients for X1
and X2. In the following section, we report the bias and
coverage probability of a 95% confidence interval for the
estimated coefficients of X2, the variable for which data are
missing at random. We show the mean squared error for
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X2 in Web Figure 1 (available at https://doi.org/10.1093/aje/
kwab271) and the bias, coverage, and mean squared error
for X1 in Web Figure 2. A Gaussian kernel was used for
all simulations. Bandwidth was selected to be the minimum
value that included 1 observation within 1 standard deviation
for simulations with a sample size of 100 and 7 observations
within 1 standard deviation for simulations of sample size
1,000.

Simulation results

Bias. As Figure 2 shows, overall we find lower bias in the
estimation of β2 under all scenarios when imputation is done
with MICE with Super Learner as compared with MICE
with PMM or MICE with BLR. The bias reduction from
Super Learner is most apparent in the quadratic scenario.
With a sample size of 1,000, all 3 approaches are equivalent
until we reach 30% missingness, at which point MICE with
Super Learner has lower bias than the other 2 imputation
methods. With a sample size of only 100, PMM has higher
bias at all levels of missingness. MICE imputation with BLR
is equivalent to MICE imputation with Super Learner with
low levels of missingness; with 20% or more missingness,
MICE with Super Learner has the lowest bias.

Under both the lognormal scenario and the binary sce-
nario, MICE with Super Learner and BLR perform com-
parably with respect to bias in β2, whereas PMM performs
substantially less well. PMM shows particularly poor per-
formance when missingness exceeds 30%–40%.

Finally, under the zero-inflated Poisson scenario, MICE
with Super Learner has lower levels of bias than the other
approaches, with levels of missingness above 30% or 40%,
depending on the sample size. When n = 1,000 and miss-
ingness is below 20%, the other 2 approaches very slightly
outperform MICE with Super Learner.

Coverage. Under all scenarios, with respect to coverage,
MICE with Super Learner performs well relative to the other
approaches. Using MICE with Super Learner, coverage for
the 95% confidence interval for β2 is close to the stated
95% for all levels of missingness with sample sizes of
100, 400, 700, and 1,000. Under the quadratic and zero-
inflated Poisson scenarios, both PMM and BLR perform
poorly when missingness is greater than 20%–30%. With a
sample size of 1,000 and 50% of values missing, coverage
using PMM is as low as 15% in the quadratic scenario
and below 65% in the zero-inflated Poisson scenario; BLR
coverage falls as low as 15% in both the quadratic and
zero-inflated Poisson scenarios. Under the lognormal and
binary scenarios, Super Learner and BLR generally perform
comparably, while coverage for PMM performance begins
to drop with missingness above 30%. When missingness is
as high as 50%, coverage using PMM falls below 40% in the
lognormal scenario and under 80% in the binary scenario.

APPLIED EXAMPLE: ANALYSIS OF NATIONAL CRIME
VICTIMIZATION SURVEY

We applied SuperMICE to a real data set, the National
Crime Victimization Survey (10). The National Crime Vic-

timization Survey is a nationally representative survey on
crime victimization administered by the Bureau of Justice
Statistics (US Department of Justice). Our sample included
all respondents who had personally experienced a violent
victimization between the years 2008 and 2015 (n = 1,313).

We estimated the association between victimization with
a firearm (vs. victimization with another weapon or no
weapon) and the presence of self-reported psychosomatic
problems (headaches, trouble sleeping, changes in eating
or drinking habits, upset stomach, fatigue, high blood pres-
sure, muscle tension or back pain, or some other physical
problem). The presence and type of weapon involved in
the violent victimization were reported by the respondent in
response to the questions, “Did the offender have a weapon
such as a firearm or knife, or something to use as a weapon,
such as a bottle or wrench?” and “What was the weapon?”.
Psychosomatic problems were reported in response to a
series of questions beginning, “Did you experience any of
the following physical problems associated with being a vic-
tim of this crime for a month of more?” Separate questions
were asked for each of 8 possible psychosomatic problems.
For our analysis, we created a binary variable indicating
whether the respondent reported experiencing any of the
listed problems versus none. Covariates included sex, race,
age, educational level, household income, and whether or
not the perpetrator was a stranger.

The data set had some missingness. Reporting on the
weapon type was missing in 10% of instances. Data on sev-
eral additional covariates were missing: Educational level
and household income data were both missing in 15% of
instances; the relationship between the perpetrator and the
victim was missing in 3% of instances. Reports of psycho-
somatic problems were missing in 0.3% of observations.
We present a visualization of missingness patterns in Web
Figure 3.

We used logistic regression to estimate the odds of experi-
encing a psychosomatic problem associated with victimiza-
tion with a firearm. We used the 3 different MICE methods
to fill in missing values: BLR, PMM, and Super Learner. We
also fitted the logistic regression model without imputation,
which by default applies listwise deletion to the rows of data
with missing values. Results are shown in Table 1.

We included the following algorithms in our SuperMICE
imputation: random forest, neural networks, LASSO, gener-
alized linear models, and an algorithm that simply predicts
the marginal mean value. Web Table 1 shows the average
weights across imputations for each base learner and each
imputed variable.

As Table 1 shows, we found a statistically significant
relationship between victimization with a gun and self-
reported psychosomatic problems. The log odds ranged from
1.73 to 1.88 across methods. Not surprisingly, the confidence
interval was largest for the logistic regression model imple-
mented without imputation, which, by default, deletes rows
that have missing values. As noted above, listwise deletion
will lead to a loss of power (and can lead to biased param-
eter estimates when the data are not missing completely at
random). In this case, the coefficient remained statistically
significant and comparable to the estimates calculated using
multiple imputation.
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Figure 2. Simulation estimates for the bias (A) and coverage (B) of β̂2.The bias plots show the average absolute value of the bias across 1,000
simulations. The coverage plots show the percentage of 95% confidence intervals for β2 that contain the true value, β2 = 1, as an estimate of
coverage probability.
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Table 1. Odds of Experiencing a Psychosomatic Problem Associated With Firearm Victimization Derived Using
Different Multiple Imputation Methods

Imputation Method Odds Ratio 95% CI P Value

Super Learner imputation 1.73 1.10, 2.73 0.01

PMM imputation 1.86 1.17, 2.94 0.01

Linear imputation 1.79 1.13, 2.84 0.01

No imputation 1.88 1.14, 3.19 0.02

Abbreviations: CI, confidence interval; PMM, predictive mean matching.

DISCUSSION

Super Learner allows for a rich and diverse user-specified
library of prediction and screening algorithms, affording
greater protection against misspecification of the imputation
model. Our simulations showed the Super Learner method to
generally have lower bias and better coverage than BLR and
PMM.

The simulations demonstrated the potential for produc-
ing biased estimates when the imputation model is mis-
specified, especially under high levels of missingness. By
supplying a flexible library of diverse algorithms spanning
the bias-variance spectrum, MICE equipped with Super
Learner remained more robust to problems of misspecifica-
tion. Super Learner estimates are constructed as weighted
averages of high-bias, low-variance methods, such as linear
regression, and low-bias, high-variance methods, such as
generalized additive models. The weights are chosen to min-
imize cross-validated risk, which is at least as small as the
component method with the lowest risk. Thus, Super Learner
balances bias and variance to find a more optimal estimator.

MICE equipped with Super Learner maintained near 95%
coverage in all scenarios and had the smallest bias of the
3 methods. By contrast, in nearly all simulation scenarios
for PMM and in the quadratic and zero-inflated Poisson
scenario for BLR, the coverage probability for β2 fell well
below the stated 95%. The actual coverage fell as low as
15% in the quadratic scenario for both PMM and BLR. Addi-
tionally, bias increased with missingness in all scenarios for
both PMM and BLR. While not the focus of the simulations
presented, when the coefficient of β1 was considered as well,
Super Learner also greatly outperformed the other 2 methods
(shown in Web Figure 2).

PMM had particularly large bias with high levels of miss-
ingness as neighbors were more distanced; BLR, on the other
hand, performed poorly in cases where a linear function
could not accurately approximate the true relationship. The
regression approach does allow for specifying nonlinear
forms a priori, and it will perform well when the model
is correctly specified even under high missingness, but this
requires user knowledge of all relationships to be modeled,
which can be time-consuming and leaves open the potential
for user error. Our Super Learner approach combines the
benefits of both approaches with data-adaptive and semi-
parametric sampling of imputed values.

The case study analyses did not show meaningful dif-
ferences in parameter estimates across imputation meth-
ods. The absence of difference across methods is probably
explained by the fact that the data set we used had fairly
minimal missing data. Information on our outcome was
rarely missing (0.3%), and the key parameter of interest was
missing in 10% of instances. Statistical guidelines generally
suggest that complete-case analyses may be performed if
levels of missing data are below 5% (41, 42), and our
simulations confirm that differences in the performance of
imputation methods arise with higher levels of missingness.

Limitations

This study had several important limitations. First, while
we found that MICE equipped with Super Learner was more
robust in simulations where BLM and PMM performed
poorly, these scenarios do not represent all potential data
structures, and there are instances in which other approaches
may be preferred. If it is known, for example, that a variable
is close to normally distributed, a linear regression model
can be appropriately used to predict the missing values for
that variable. In fact, previous research shows that a correctly
specified parametric model may outperform a correctly
specified singly robust nonparametric model (43). However,
often the researcher does not know a priori what the appro-
priate model is, and one of the advantages of implementation
with Super Learner is that the user may adjust the library to
include models that represent a range of complexity and flex-
ibility: The user could, for example, adopt a fully parametric
approach with a single parametric base learner in the library
if there was reason to believe that such a model was appropri-
ate. Further, the user can include screener algorithms, which
may be useful in contexts where there are a large number of
covariates and concerns regarding multicollinearity. Addi-
tional benefits may accrue from the use of a doubly robust
approach, which previous studies suggest could further
reduce bias in estimates (43, 44). A second limitation is that
the current Super Learner package in R, upon which our
adaptation of the MICE package relies, only allows for
binary and continuous outcomes. Finally, and more broadly,
we note that multiple imputation may not always be the
best way to deal with missing data. As we discussed above,
multiple imputation is just one approach to missingness.
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Depending on the nature of missingness and the parameters
to be estimated, other methods might be preferable.

Conclusion

When imputing data, even if the missing-at-random
assumption is met, there remains a question as to the appro-
priate specification for the imputation model. Incorporating
an ensemble machine learning approach into MICE provides
a way to more flexibly model the functional form. This is
important because if the predictive models of the imputed
values are incorrectly specified, the mean and variance of
the imputed values may be biased, yielding inconsistent
parameter estimates.

Our approach extends and generalizes efforts to incorpo-
rate decision trees into multiple imputation to better model
nonlinear relationships (22, 23). Super Learner allows for
a broad and diverse set of machine learning algorithms
to be included in the ensemble, and it has the virtue of
performing asymptotically as well as or better than any of the
single constituent algorithms (e.g., random forest or CART,
if included in the library).

Our simulation results show that MICE with Super
Learner produces lower bias and better coverage than other
commonly used methods, particularly when a large pro-
portion of data is missing. This suggests that incorporating a
flexible machine learning approach at the imputation model-
ing stage can be useful for complex epidemiologic data sets.
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