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Summary
Multiple randomized controlled trials, each comparing a subset of competing
interventions, can be synthesized by means of a network meta-analysis to esti-
mate relative treatment effects between all interventions in the evidence base.
Here we focus on estimating relative treatment effects for time-to-event out-
comes. Cancer treatment effectiveness is frequently quantified by analyzing
overall survival (OS) and progression-free survival (PFS). We introduce a
method for the joint network meta-analysis of PFS and OS that is based on a
time-inhomogeneous tri-state (stable, progression, and death) Markov model
where time-varying transition rates and relative treatment effects are modeled
with parametric survival functions or fractional polynomials. The data needed
to run these analyses can be extracted directly from published survival curves.
We demonstrate use by applying the methodology to a network of trials for the
treatment of non-small-cell lung cancer. The proposed approach allows the joint
synthesis of OS and PFS, relaxes the proportional hazards assumption, extends
to a network of more than two treatments, and simplifies the parameterization
of decision and cost-effectiveness analyses.
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1 INTRODUCTION

Randomized controlled trials (RCTs) are considered the most appropriate study design to obtain evidence regarding
relative treatment effects. However, an individual RCT rarely includes all alternative interventions of interest, and as
such does not provide all the information needed to select the best alternative. Typically, the evidence base consists of
multiple RCTs, each of which compares a subset of the interventions of interest. If each of these trials has at least one
intervention in common with another trial such that the evidence base is represented by a single connected network,
a network meta-analysis (NMA) can estimate relative treatment effects between all the competing interventions in the
evidence base.1

Often there is an interest in estimating the relative treatment effects of alternative interventions regarding
time-to-event outcomes. For example, in oncology treatment efficacy is often quantified by analyzing time from treatment
initiation to the occurrence of a particular event. Very commonly, studies report data on overall survival (OS), where the
event is death from any cause, and on progression-free survival (PFS), where the event is death from any cause or disease
progression, whichever occurred first.2

[Correction added on 15 June 2023, after first online publication: The layout of Equation 1 and the placement of the tables and figures were updated.]
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NMA of time-to-event outcomes with a single effect measure per study are based on the proportion of patients alive
at a specific time point, median survival, or reported hazard ratio (HR).3 The limitation of a NMA of survival at a specific
time point is that we only focus on the cumulative effect of treatment at that time point and ignore the variation in effects
over time up to, as well as beyond, that time point. NMAs of median survival times have similar limitations. The HR
summarizes the treatment effect for the complete follow-up period of the trials, but only represents the treatment effect
for each time point if the proportional hazards (PH) assumption holds. If the PH assumption is violated, trial specific HRs
represent an average effect over the follow-up period, which can cause biased estimates in a NMA if trials have different
lengths of follow-up.

As an alternative to a NMA with a univariate treatment effect measure, we can also use a multivariate treatment effect
measure that describes how the relative treatment effects change over time.3 Ouwens et al, Jansen, and Cope et al pre-
sented methods for NMA of time-to-event outcomes where the hazard functions of the interventions in a trial are modeled
using parametric survival functions or fractional polynomials and the difference in the parameters are considered the
multi-dimensional treatment effects, which are synthesized across studies.4-7 By incorporating time-related parameters,
these NMA models can be fitted more closely to the available data.

Both PFS and OS of an intervention determine its value and can inform decision-making. In combination with a base-
line survival function for a reference treatment, the multivariate NMA models embedded in parametric survival functions
can form the basis for partitioned-survival cost-effectiveness models.8 Frequently, the pooled PFS and OS curves need to
be extrapolated over time in order to obtain estimates of the expected quality adjusted life-years before and after disease
progression. Since the separate meta-analyses of PFS and of OS data ignore the correlation between the outcomes, any
required extrapolation may result in possible crossing of PFS and OS curves. A state-transition model with three health
states—stable (pre-progression), progression, and death—with parametric hazard functions for the three corresponding
transitions avoids this issue. If we have individual patient data (IPD) regarding time to progression, time to death, and
censoring for all trials included in the NMA, we can estimate these hazard functions using a statistical model with the
same tri-state structure and avoid any inconsistency between the clinical evidence synthesis and the economic evalua-
tion.9 Reality though is that for most, if not all, trials there is no access to IPD and the synthesis has to be based on reported
summary findings. Although reported Kaplan-Meier curves for PFS and OS can be digitized and a dataset of “virtual” IPD
event-times can be created with the algorithm by Guyot et al, it does not provide the information needed to determine
which time-to-progression data point corresponds to which time-to-death data point.10 Markov-state-transition NMA
models have been presented for disease progression11,12 and competing risks13 based on aggregate level data, but these
models assumed constant hazards for transitions between states.

We introduce a method for the joint NMA of PFS and OS that is based on a tri-state (stable, progression, and death)
transition model, where time-varying hazard rates and relative treatment effects are modeled with parametric survival
functions or fractional polynomials. We illustrate parameter estimation based on aggregate level data.

2 MULTI-STATE NETWORK META-ANALYSIS FRAMEWORK

2.1 Model

At any time u, patients in study i randomized to treatment arm k can be in one of three health states: alive with stable
disease (ie, not progressed), alive and progressed, and dead, with probabilities Sik(u), Pik(u) and Dik(u), respectively, as
shown in Figure 1. Let hSP

ik (u), hSD
ik (u), and hPD

ik (u) be the hazard rates for the stable-to-progression transition (ie, disease
progression), the stable-to-death transition (ie, dying pre-progression), and the progression-to-death transition (ie, dying
post-progression).

F I G U R E 1 Relationship between stable disease (S), progression (P), and death (D) as used in the multi-state network meta-analysis
model.
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A multi-state NMA that explicitly estimates each possible transition in a tri-state model and modeling time-varying
hazard rates and relative treatment effects with survival functions parameterized as fractional polynomials can be
expressed as follows:

ln
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ik (u)

)
= 𝛼1,ik + 𝛼2,iku(p1) + · · · + 𝛼a,iku(pa−1)
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with 𝛿1,i1 = 𝛿2,i1 =, … ,= 𝛿B,i1 = 0 and d1,11 = d2,11 =, … ,= dB,11 = 0 for identification.
In Equation (1), p1, … , pB−3 are fractional powers and the round bracket notation denotes the Box-Tidwell transfor-

mation: u(p) = up if p ≠ 0 and u(p) = ln(u) if p = 0. Equation (1) also includes the situation of repeated powers, where
px = py for at least 1 pair of indices (x, y), 1 ≤ x < y ≤ a − 1, a ≤ x < y ≤ b − 1, or b ≤ x < y ≤ B − 3. In this situation,
u(py) ln(u) is used instead of u(py) itself. A complete set of flexible fractional polynomials can be created with p1, … , pB−3 ∈
{−2,−1,−0.5, 0, 0.5, 1, 2}.

𝛼1,ik, 𝛼2,ik, … , 𝛼a,ik are regression coefficients that represent the scale and shape parameters of the log-hazard function
describing the stable-to-progression transition in study i for study arm k. 𝛼a+1,ik, 𝛼a+2,ik, … , 𝛼b,ik are the regression coeffi-
cients that represent the log-hazard function for the stable-to-death transition. 𝛼b+1,ik, 𝛼b+2,ik, … , 𝛼B,ik are the regression
coefficients that represent the scale and shape parameters of the log-hazard function describing the progression-to-death
in study i for study arm k.

When 𝛼3,ik =, … ,= 𝛼a,ik = 0, 𝛼a+3,ik =, … ,= 𝛼b,ik = 0, and 𝛼b+3,ik =, … ,= 𝛼B,ik = 0 the log-hazard functions for each
of the three transitions follow a first order fractional polynomial of which the Weibull and Gompertz are special cases
when p1 = pa = pb = 0 and p1 = pa = pb = 1, respectively. When 𝛼4,ik =, … ,= 𝛼a,ik = 0, 𝛼a+4,ik =, … ,= 𝛼b,ik = 0, and
𝛼b+4,ik =, … ,= 𝛼B,ik = 0 the log-hazard functions for each of the three transitions follow a second-order fractional
polynomial.

The 𝜇⋅,i reflect the study effects regarding the scale and shape parameters in each study i. The 𝛿⋅,ik are the study specific
true underlying relative treatment effects for the treatment in study arm k relative to the treatment in arm 1 of that trial
(with 𝛿⋅,i1 = 0 for identification) regarding the scale and shape parameters of the log-hazard functions for the different
transitions, which are modeled with normal distributions with the mean effect for treatment t expressed in terms of the
overall reference treatment 1, d⋅,1tik − d⋅,1ti1 , and with a between-study-heterogeneity covariance matrix Σ. d⋅,1tik represents
the relative treatment effect with treatment t in study arm k in study i relative to reference treatment 1 regarding the scale
and shape parameters of the log-hazard functions. We make the assumption of a common between-study correlation
(𝜌d1,xydB,xy = 𝜌d1dB) and 𝜎d⋅ represents the common between-study standard deviation.

A fixed effect model is obtained by replacing
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The random effects model presented with Equation (1) does not account for correlation between trial-specific 𝛿⋅,ik s in
multiple-arm trials (> 2 treatments), but can be extended to fit trials with three or more treatment arms by decomposition
of a multivariate normal distribution as a series of conditional distributions according to Achana et al.14 The conditional
distributions for arm k > 2, given all arms from 2 to k − 1 are:
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2.2 Data and likelihood

For this paper we assume there is no access to IPD for the trials included in the NMA. The parameters will be estimated
based on the conditional survival probabilities regarding PFS and OS that can be infered from the published Kaplan-Meier
curves. (See Appendix A for the algorithm outlining construction of the dataset.) The total follow-up time can be par-
titioned into M successive non-overlapping intervals indexed by m = 1, … ,M. We refer to interval m as Um and write
u ∈ Um to denote um ≤ u < um+1. The length of Um isΔum = um+1 − um. For each interval m, we propose a binomial like-
lihood for the conditional survival probabilities regarding PFS and OS at time point u relative to the time point at the
beginning of the interval Um according to:

rcPFS
iku ∼ binomial

(
pcPFS

ik (u),ncPFS
iku

)
and rcOS

iku ∼ binomial
(

pcOS
ik (u),ncOS

iku

)
(3)

where rcPFS
iku are the observed number of patients who have not yet experienced progression or death at time u in the mth

interval in study i for treatment arm k and rcOS
iku are the observed number of patients who have not died at time u in that

interval. pcPFS
ik (u) is the underlying conditional survival probability regarding PFS and pcOS

ik (u) is the underlying conditional
survival probability regarding OS, ncPFS

iku and ncOS
iku are the corresponding sample sizes at the beginning of the interval.

For the mth interval, the conditional probabilities pcPFS
ik (u) and pcOS

ik (u) are related to the proportion of patients who are
progression free (stable disease) Sik(u) and the proportion of patients with progressed disease Pik(u) according to:

pcPFS
ik (u) = Sik(u)

Sik(um)
and pcOS

ik (u) = Sik(u) + Pik(u)
Sik(um) + Pik(um)

(4)

Arbitrary hazard functions can be approximated with a set of discontinuous constant hazard rates over relative short
successive time intervals. For each interval m, Sik(u), Pik(u), and death Dik(u) are related to the hazards hSP

ikm, hSD
ikm, hPD

ikm
according to the following set of differential equations (See Appendix B):
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In order to estimate the three parameters hSP
ikm, hSD

ikm, and hPD
ikm for each interval m, we need to define Equations (3),

(4), and (5) for at least two time points per interval. In order to improve identifiability of hazard rates in the presence
of a small number of events, we use three time points per interval: (1) a time point at 1/3 of the length of the interval
um + 1

3
Δum, which we define as um+ 1

3
; (2) a time point at 2/3 of the length of the interval um + 2

3
Δum, which we define
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as um+ 2
3
; and (3) the time point at the end of the interval um+1. The obtained estimates of the hazards for interval m are

assigned to the time point um+ 1
3

for Equation (1).

3 ILLUSTRATIVE EXAMPLE

3.1 Evidence base

An example of the multi-state models is presented for a NMA of first line treatment of adult patients with
metastatic EGFR+ non-squamous non-small-cell lung cancer (NSCLC) with gefitinib, erlotinib, afatinib, dacomitinib,
or platinum-based doublet chemotherapy (PBDC) regimens. Thirteen RCTs were obtained with a systematic literature
review (ARCHER1050;15,16 LUX-LUNG 7;17,18 LUX-LUNG 3;19,20 LUX-LUNG 6;20,21 EURTAC;22-24 ENSURE;25 OPTI-
MAL;26,27 First-SIGNAL;28 WJTOG3405;29 IPASS;30,31 NEJ002;32,33 Han2017;34 Yang201435,36). The evidence network is
presented in Figure 2 and the trial-specific PFS and OS curves are provided in the online supplementary material.

F I G U R E 2 Evidence network of RCTs.

3.2 Network meta-analysis to estimate relative treatment effects

The following model was used for the NMAs, which is a simplification of Equation (1) to facilitate parameter estimation,
yet believed to be sufficiently flexible to capture the true time-varying hazards for all three transitions in this cancer case
study.
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When 𝛼3,ik = 0 and p1 ∈ {0, 1} the log-hazard functions for the stable-to-progression transition follow a Weibull or

Gompertz distribution. When in addition 𝛼3,ik ≠ 0 and p2 ∈ {0, 1} the log-hazard functions follow a second order polyno-
mial that are extensions of the Weibull and Gompertz model to allow for arc- and bathtub shaped log-hazard functions.
When 𝛼5,ik = 0 the stable-to-death transition follows an exponential distribution. When 𝛼5,ik ≠ 0 and p3 ∈ {0, 1} this tran-
sition is represented with a Weibull or Gompertz distribution, respectively. When 𝛼7,ik = 0 the log-hazard functions for
the progression-to-death transition follow an exponential distribution. When 𝛼7,ik ≠ 0 and p4 ∈ {0, 1} this transition is
represented with a Weibull or Gompertz distribution.

With this model we assume that the relative treatment effects act on all parameters of the stable-to-progression
log-hazard function (d1,1tik , d2,1tik , and d3,1tik ). d4,1tik represents the relative treatment effect on the scale parameter of the
log-hazard function for the progression-to-death transition. There is one between-study heterogeneity parameter, which
is related to the relative treatment effect that acts on the scale of the log-hazard function for the stable-to-progression
transition: The 𝛿1,ik are drawn from a normal distribution with the mean effect for treatment t expressed in terms of the
overall reference treatment 1, d1,1tik − d1,1ti1 , and between study heterogeneity 𝜎2
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were assumed to be fixed. To accommodate three-arm trials (although not included in this example) Equation (2) can be
simplified for this model according to:
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If it is assumed that treatment only has an effect on the transitions from stable to progression, the model can be further
simplified by setting d4,1tik = 0.

The following prior distributions for the parameters of the model were used:
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𝜎d1 ∼ uniform(0, 2) (8)

3.3 Meta-analysis of absolute effects with overall reference treatment

A NMA provides estimates of relative treatment effects between the competing interventions (ie, hazard ratios). In order
to obtain estimates for the hazard rates over time for the transitions between health states for each treatment, we first need
to estimate the time-varying hazard rates for an overall reference treatment, defined as treatment 1, and subsequently
apply the hazard ratios of each treatment relative to treatment 1 obtained with the NMA to these baseline hazard rates. As
a final step, these time-varying hazard rates for each transition by treatment can be transformed into the distribution S, P,
and D over time, and PFS and OS curves. In this example, gefitinib is defined as treatment 1. Different sources of evidence
can be considered for estimating a baseline model, and in the context of cost-effectiveness analysis, it is standard practice
to use a (large) observational study that reflects the outcomes in routine practice for the target population of interest.
If that is not available, the trial most relevant for the target population can be selected. If multiple studies are deemed
relevant then a meta-analysis can be considered. For this example, we still performed a meta-analysis of all gefitinib arms
of the trials (instead of selecting one most relevant trial) to illustrate that the proposed framework can also be used to
estimate a baseline model if indeed multiple studies are relevant. We used the following fixed effects model:

ln
(

hSP
i (u)

)
=

{
M1 +M2up1 +M3up2 if p1 ≠ p2

M1 +M2up +M3up ln(u) if p1 = p2 = p

ln
(

hSD
i (u)

)
= M4 +M5up3

ln
(

hPD
i (u)

)
= M6 +M7up4 (9)

We used the same data structure, likelihood, and link functions as used for the NMA. (See Equations 3,4, and 5). The
prior distribution for this model was:
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(10)

3.4 Parameter estimation

The parameters of the different models were estimated using a Markov Chain Monte Carlo (MCMC) method implemented
in the JAGS software package.37 All JAGS analyses were run using the rjags package of R statistical software.38 See the
online supplementary material for the JAGS code for one of the models used to estimate relative treatment effects.

If the sample size or number of PFS or OS related events in interval Uikm is relatively small, it may be challenging
with the MCMC algorithm to distinguish between the “correct answer” for hSP

ikm, hSD
ikm, and hPD

ikm, and alternative estimates
where either hSP

ikm = 0 or hPD
ikm = 0. As such, we set a constraint to avoid that hSP

ikm and hPD
ikm is estimated to be zero. (See the

JAGS code in the online supplementary material)
The residual deviance and the deviance information criterion (DIC) were used to compare the goodness-of-fit of

the competing models.39 The DIC provides a measure of model fit that penalizes model complexity. In general, a more
complex model results in a better fit to the data, demonstrating a smaller residual deviance. The model with the better
trade-off between fit and parsimony has a lower DIC. A difference of 5 points in the DIC is considered meaningful.39
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3.5 Results

For transparency purposes we first present the results of the meta-analysis of treatment 1 (gefitinib), followed by the
results of the NMA, and finally the PFS and OS curves obtained by applying the relative treatment effects obtained with
the NMA to the pooled results for treatment 1.

In Table 1, ten competing models for the meta-analysis of treatment 1 that were evaluated are presented. The
meta-analysis models with a second order fractional polynomial for the stable-to-progression transition (“SP second order
FP(0.); SD… ; PD… ”, ie, M3 ≠ 0) resulted in the smallest deviance and DICs. The models assuming a Gompertz distri-
bution for this transition (“SP Gompertz; SD… ; PD… ”, ie, M2 ≠ 0, up1 = 1, and M3 = 0) resulted in the largest deviance
and DIC. The parameter estimates of a selection of four competing models that show different patterns of time-varying
hazards for the three transitions between the health states are presented in Table 2. The actual time-varying hazard rates
and corresponding PFS and OS curves with treatment 1 are plotted in Figure 3.

F I G U R E 3 Pooled estimates of hazard rates over time for the stable-to-progression transition (SP), stable-to-death transition (SD), and
progression-to-death transition (PD), and PFS and OS curves with treatment 1 from a selection of alternative multi-state fixed effects
meta-analysis models.
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T A B L E 1 Model fit criteria for alternative meta-analysis and network meta-analysis models.

Model Deviance pD DIC
Meta-analysis treatment 1

SP second order FP(01); SD Weibull; PD Weibull 1983 7.6 1991

SP second order FP(01); SD Weibull; PD exponential 1983 6.7 1990

SP second order FP(01); SD exponential; PD Weibull 2000 6.4 2007

SP second order FP(01); SD exponential; PD exponential 2001 5 2006

SP second order FP(00); SD exponential; PD Weibull 2018 6.8 2026

SP Weibull; SD Weibull; PD exponential 2057 5.4 2063

SP Weibull; SD exponential; PD Weibull 2050 4.9 2056

SP Weibull; SD exponential; PD exponential 2055 5.1 2061

SP Gompertz; SD exponential; PD Weibull 2116 4.6 2121

SP Gompertz; SD exponential; PD exponential 2155 4.8 2161
Network meta-analysis

SP second order FP(01) FE3; SD Weibull; PD Weibull FE1(scale) 5849 119 5968
SP second order FP(01) FE3; SD Weibull; PD exponential FE 5864 108 5972

SP second order FP(01) FE3; SD Weibull; PD exponential 5872 98 5970

SP second order FP(01) FE3; SD exponential; PD Weibull FE1(scale) 5943 91 6034

SP second order FP(01) FE3; SD exponential; PD Weibull 5970 91 6061

SP second order FP(01) FE3; SD exponential; PD exponential 5980 79 6059

SP Weibull FE2; SD Weibull; PD exponential FE 5977 75 6052

SP Weibull FE2; SD exponential; PD Weibull FE1(scale) 6005 81 6087

SP Weibull FE2; SD exponential; PD Weibull 6055 71 6126

SP Weibull FE2; SD exponential; PD exponential 6069 61 6130

SP 2nd order FP(01) RE3; SD Weibull; PD Weibull FE1(scale) 5803 129 5932

SP 2nd order FP(01) RE3; SD Weibull; PD exponential FE 5821 116 5937

SP 2nd order FP(01) RE3; SD exponential; PD Weibull FE1(scale) 5898 111 6009

SP Weibull RE2; SD exponential; PD Weibull FE1(scale) 5977 86 6063

Note: Deviance defined as −2 × log(likelihood). DIC: Deviance information criterion, DIC = D + pD. D is the posterior mean of the deviance. pD: the posterior
mean of the deviance minus the deviance of the posterior means, corresponds to the effective number of parameters. SP: stable-to-progression transition; SD:
stable-to-death transition; PD: progression-to-death transition; FP(01) second order fractional polynomial with p1 = 0 and p2 = 1; FP(00) second order fractional
polynomial with p1 = p2 = 0; FE3 and RE3: fixed and random effects model with relative treatment effects impacting the three parameters of the second order
fractional polynomial log-hazard function for the stable-to-progression transition; FE2 and RE2: fixed and random effects model with relative treatment effects
impacting the scale and shape parameters of the Weibull or Gompertz log-hazard function for the stable-to-progression transition; FE1(scale): fixed effects
model with relative treatment effect impacting the scale parameters of the Weibull or Gompertz log-hazard function for the progression-to-death transition; FE:
fixed effects model with relative treatment effect impacting the rate parameter of the exponential log-hazard function for the progression-to-death transition.

T A B L E 2 Parameter estimates with 95% credible intervals (low, high) regarding hazard rates over time for the stable-to-progression
transition, the stable-to-death transition, and progression-to-death transition with treatment 1 for a selection of alternative meta-analysis
models.

Model 1 Model 2 Model 3 Model 4

Parameter Estimate Low High Estimate Low High Estimate Low High Estimate Low High
M1 −3.752 −4.081 −3.512 −3.758 −4.102 −3.514 −3.628 −3.777 −3.469 −3.136 −3.23 −3.041
M2 0.974 0.768 1.241 0.963 0.761 1.237 0.512 0.441 0.583 0.052 0.044 0.06
M3 −0.073 −0.101 −0.049 −0.069 −0.098 −0.046
M4 −4.786 −5.306 −4.378 −4.808 −5.34 −4.385 −4.587 −4.605 −4.513 −4.589 −4.605 −4.527
M5 −0.984 −1.17 −0.578 −0.992 −1.17 −0.615 0.013 −0.013 0.07
M6 −2.983 −3.431 −2.504 −2.779 −2.872 −2.681 −2.968 −3.059 −2.879 −2.97 −3.053 −2.881
M7 0.071 −0.092 0.227

Note: Model 1: SP second order FP(01); SD Weibull; PD Weibull. Model 2: SP second order FP(01); SD Weibull; PD exponential. Model 3: SP Weibull; SD
Weibull; PD exponential. Model 4: SP Gompertz; SD exponential; PD exponential. Estimate: the median of the posterior distribution; low and high: lower and
upper bound of the 95% credible interval corresponding to the 2.5th and 97.5th percentile of the posterior distribution.
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For the NMA, 14 competing models were evaluated; ten fixed effects models and four random effects models.
(See Table 1) The NMA models that assumed a second order fractional polynomial for the stable-to-progression
transition had a lower deviance and DIC than the corresponding simpler models assuming a Weibull dis-
tribution for this transition. The models with a Weibull distribution for the stable-to-death transition had a
lower DIC than the corresponding models assuming an exponential distribution for this transition. Models
with a Weibull distribution for the progression-to-death transition were not a meaningful improvement over
the corresponding models that assumed an exponential distribution for this transition. Comparing models that
assumed a relative treatment effect for the progression-to-death transition with the corresponding models with-
out this relative treatment effect indicates that a relative effect may be a relevant component to include for

F I G U R E 4 Estimates of hazard ratios for the stable-to-progression transition with treatments 2–5 relative to treatment 1 from a
selection of alternative multi-state network meta-analysis models.
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this transition in some models. The second order fractional polynomial and Weibull random effects models
performed better than their fixed effects equivalents, indicating that incorporating between-study heterogeneity is
important.

Parameter estimates for the random effects second order fractional polynomial model (“SP second order FP(01)
RE3; SD Weibull; PD Weibull FE1(scale)”), the random effects Weibull model (“SP Weibull RE2; SD exponential;
PD Weibull FE1(scale)”), and two fixed effects models (“SP Weibull FE2; SD Weibull; PD exponential FE” and
“SP Weibull FE2; SD exponential; PD exponential”) are presented in Table 3. The corresponding time-varying HRs
with each treatment relative to treatment 1 for the stable-to-progression transition are presented in Figure 4,
and the constant HRs for the progression-to-death transition in Figure 5. (Please note that we did not assume

F I G U R E 5 Estimates of hazard ratios for the progression-to-death transition with treatments 2–5 relative to treatment 1 from a
selection of alternative multi-state network meta-analysis models.
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a relative treatment effect for the stable-to-death transition). Applying the relative treatment effect parameter
estimates describing the HRs over time obtained with these NMA models to the parameter estimates of the
models used for the analysis of treatment 1, we obtain the PFS and OS curves by treatment, as presented in
Figure 6. In order to illustrate the width of the 95% credible intervals of these survival curves due to the uncer-
tainty in the time-varying HRs, we ignored the uncertainty for the reference treatment 1. (If the uncertainty
of the meta-analysis would have been incorporated as well, the 95% credible intervals would have been a bit
wider.)

F I G U R E 6 Estimates of progression-free survival and overall survival for treatment 1–5 obtained with a selection of alternative
multi-state network meta-analysis models.
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T A B L E 3 Relative treatment effect parameter estimates with 95% credible intervals (low, high) regarding time-varying hazard rates for
the stable-to-progression transition, stable-to-death transition, and progression-to-death transition for a selection of alternative network
meta-analysis models.

Model 1 Model 2 Model 3 Model 4

Parameter Estimate Low High Estimate Low High Estimate Low High Estimate Low High

d1,11 0 0 0 0 0 0 0 0 0 0 0 0

d1,12 −0.661 −1.686 0.286 −0.483 −1.299 0.299 −0.481 −1.013 0 −0.531 −1.1 −0.048

d1,13 −0.096 −0.904 0.709 −0.131 −0.74 0.485 −0.069 −0.36 0.237 −0.14 −0.433 0.17

d1,14 0.222 −1.019 1.389 −0.019 −0.981 0.977 0.016 −0.41 0.445 0.042 −0.388 0.457

d1,15 0.7 0.137 1.254 0.636 0.208 1.056 0.685 0.449 0.932 0.689 0.459 0.918

d2,11 0 0 0 0 0 0 0 0 0 0 0 0

d2,12 −0.84 −1.635 −0.114 −0.152 −0.411 0.127 −0.085 −0.349 0.187 −0.019 −0.283 0.262

d2,13 −0.206 −0.645 0.169 −0.059 −0.209 0.089 −0.074 −0.227 0.074 −0.045 −0.199 0.101

d2,14 −0.547 −1.089 −0.013 −0.341 −0.535 −0.135 −0.347 −0.539 −0.156 −0.344 −0.536 −0.15

d2,15 0.127 −0.256 0.492 0.122 −0.005 0.249 0.156 0.026 0.28 0.084 −0.035 0.209

d3,11 0 0 0

d3,12 0.217 0.053 0.388

d3,13 0.024 −0.028 0.079

d3,14 0.029 −0.042 0.096

d3,15 −0.021 −0.093 0.049

d4,11 0 0 0 0 0 0 0 0 0

d4,12 −0.114 −0.997 0.37 0.339 0.003 0.696 0.046 −0.462 0.503

d4,13 −0.041 −0.273 0.181 0.051 −0.135 0.247 −0.134 −0.333 0.074

d4,14 0.24 −0.094 0.564 0.146 −0.18 0.48 0.207 −0.105 0.516

d4,15 −0.245 −0.393 −0.095 −0.299 −0.45 −0.148 −0.273 −0.43 −0.112

𝜎d1
0.445 0.237 0.891 0.372 0.211 0.749

Note: Model 1: SP second order FP(01) RE3; SD Weibull; PD Weibull FE1(scale). Model 2: SP Weibull RE2; SD exponential; PD Weibull FE1(scale). Model 3: SP
Weibull FE2; SD Weibull; PD exponential FE. Model 4: SP Weibull FE2; SD exponential; PD exponential. Estimate: the median of the posterior distribution.
Low and high: lower and upper bound of the 95% credible interval corresponding to the 2.5th and 97.5th percentile of the posterior distribution. d1,1t : relative
treatment effect with treatment t versus treatment 1 regarding the scale of the log-hazard function describing the stable-to-progression transition. d2,1t : relative
treatment effect with treatment t versus treatment 1 regarding the first shape parameter of the log-hazard function describing the stable-to-progression
transition. d3,1t : relative treatment effect with treatment t versus treatment 1 regarding the second shape parameter of the log-hazard function describing the
stable-to-progression transition. d4,1t : relative treatment effect with treatment t versus treatment 1 regarding the scale of the log-hazard function describing the
progression-to-death transition.

4 DISCUSSION

With this paper, we present a method for the joint NMA of PFS and OS that is based on a tri-state transition model.
This method extends existing parametric NMA methods for time-to-event data4-7 by defining the structural relationship
between PFS and OS according to the stable, progression, and death states that define the course of disease over time.
Instead of modeling the time-varying hazard rates for PFS and OS separately, we model the time-varying transition rates
between the three health states simultaneously. The primary advantage of this evidence synthesis framework is that
estimates for PFS and OS remain consistent over time, which is needed for decision and economic modeling.

The primary reason to propose the method described in this paper is to facilitate parameterization of multi-state
cost-effectiveness models based on summary level data. In order to do so, we describe the conditional survival probability
for PFS and OS with two separate binomial likelihoods for a given interval m (See Equation 3), and capture their rela-
tionship with Equations (4) and (5). The implication of this approach is that we assume that hPD

ikm is independent from
hSP

ikm, or hSD
ikm, or both hSP

ikm and hSD
ikm. The correlation between conditional PFS and conditional OS is explained by shared
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parameters hSP
ikm and hSD

ikm. For the purposes of decision making, the uncertainty in estimates is at least as important as
the point estimates themselves. If the structural assumption regarding the relationship between the likelihoods for con-
ditional PFS and OS does not capture their correlation appropriately, the precision in some or all of the transition rates,
and therefore OS, will be overestimated. We performed a simple simulation to assess the performance of estimating the
hazard rates for the three transitions in a given time interval using the three conditional PFS and OS data points for that
interval. Overall, the coverage probabilities of the 95% credible intervals for the hazard rates are acceptable. (See online
supplementary material for more detail.) However, more elaborate simulation studies are recommended to investigate
this in more detail.

To estimate the model parameters, we opted to use three conditional PFS and three conditional OS data points for
each time interval. In principle, two conditional PFS and OS data points (ie, four data points in total) would be sufficient
to estimate the three constant hazard rates corresponding to the possible transitions in a given interval. When the num-
ber of events are small, however, the MCMC algortithm may not be able to distinguish between the “correct solutions”
for the three hazard rates and alternative solutions corresponding to a situation where either hSD

ikm or hPD
ikm equates zero. By

using three conditional PFS and OS data points for each time interval, this is less likely to be the case. (In our example,
we also used a likelihood constraint to avoid hSD

ikm or hPD
ikm equate zero.) Using three conditional PFS and OS data points

for each time interval implied 3-month constant hazards in our example, longer than if two conditional PFS and OS data
points would have been used (ie, 2-month constant hazards). In principle, we want intervals sufficiently short to allow
the models to reflect true changes in the hazards over time. However, the shorter the interval, the smaller the number
of transitions in an interval and the greater the uncertainty of the interval-specific hazard rates. With our approach, the
subsequent interval-specific rates are “connected” with the model thereby improving interval-specific estimates, but the
uncertainty in scale and shape parameter estimates will be smaller when interval-specific estimates can be estimated
with greater precision. In essence with longer time intervals we remove some of the parameter uncertainty in exchange
for a greater structural assumption. As a first attempt in assessing the impact of the length of the interval on model
estimates, we performed a comparison of the estimated time-varying hazards for the different transitions as obtained
with the meta-analysis of treatment 1 according to Model 1 based on an interval length of 3 months using three data
points (as used in the example analyses) and an interval length of 1.5 months also using three data points. (See online
supplementary material) Out of the presented models for the example, Model 1 is the most flexible in terms of capturing
changes in the hazards over time and therefore best suited to compare the impact of the length of the time-interval. As
depicted, the estimated hazards and patterns are similar between the two analyses, indicating that the method seems
robust to the chosen interval length, at least for intervals between 1.5 and 3 months. That being said, further research is
needed to define the optimal length of intervals and number of data points to use per interval given the observed number
of events in an interval, the population size at risk at the beginning of the interval, and rate of change of the hazards over
time.

Given the flexibility of the proposed framework, decisions need to be made regarding potentially relevant model struc-
tures for its implementation for a specific study. For the illustrative example, we made model choices that we considered
appropriate for a typical cancer case study where treatment aims to prolong survival. First, we assumed that a relative
treatment effect for the stable-to-death transition was not needed reflecting the belief that differences in survival between
treatments are only due to differences in delayed or avoided tumor progression, and not due to other treatment-related
(adverse) events. Second, we assumed that a function more complex than a first-order fractional polynomial with a
constant relative treatment effect was not required for the progression-to-death transition because this transition is con-
ditional upon experiencing progression and modeled in relation to follow-up time. One could even argue that a relative
treatment effect for this transition is not needed when treatment is discontinued upon progression. However, the DIC
indicated that adding this parameter to the models resulted in a meaningful improvement for the example analyses,
which is primarily related to the PBDC trials. Reasons to include a treatment effect parameter for the progression-to-death
transition is treatment cross-over upon progression in a subset of trials, if post-progression treatment between trial arms
differ, or if the post-progression mortality patterns are expected to differ between treatments due to other reasons. Fur-
thermore, there may be correlations between the time-to-progression and subsequent time-to-death that could induce
treatment effects for the progression-to-death transition. For these reasons exploring incorporating a treatment effect
for the progression-to-death transition should be explored. Third, out of the possible fractional polynomials, we only
evaluated exponential, Weibull and Gompertz models and their extensions where the additional parameter related the
log-hazard to time or log-time. We did not consider any of the negative power transformations of time, primarily because
these functions do not link to known survival distributions and the second-order models we did use have already the
flexibility to capture arc-shaped hazard functions.
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This brings us to the point of model selection in general. Factors to consider when defining a relevant subset of
competing models available within the proposed framework include: (i) the required flexibility to capture time-related
patterns of the hazard functions for the different transitions; (ii) which transitions do we expect to vary by treatment;
(iii) does treatment only impact scale or also shape parameters; (iv) how do we incorporate between-study heterogeneity;
and (v) availability of data in relation to the number of parameters to estimate. The degree of flexibility of the competing
log-hazards functions is arguably most important for the stable-to-progression transition as these hazards may vary sub-
stantially over time and between treatments. For the progression-to-death transition, the stability of estimates is arguably
the most important given the potential need for overall survival extrapolation. For the stable-to-death transition, the
importance of the appropriate function depends on the expected hazard rates in comparison to the rates for the other
transitions. If the stable-to-death transition rates are relatively low, model misspecification may have a limited impact. In
addition, these transitions may reflect background mortality and, as such, we do not need treatment effect-parameters.
When selecting the preferred models out of the defined set of competing models of potential relevance, we can use DIC
to inform model selection, as we did in our example, but estimating the total residual deviance and comparing this to
the number of data points is a useful addition as it tells us how well the models are fitting the data. In general, evaluat-
ing all possible competing models of relevance regarding fit to the data may not be feasible from a practical perspective;
even if we are estimating DIC using only a small number of exploratory MCMC samples, the computational burden is
still substantial. Future research is recommended to inform a model selection strategy or algorithm that results in a set
of models that is likely to cover the distribution of transition rates between the health states, results in realistic extrapo-
lations over time, and, given the computational burden of the more complex models for large datasets, can be evaluated
in a reasonable amount of time.

The proposed evidence synthesis framework relates directly to clock-forward time-inhomogeneous Markov decision
and cost-effectiveness models where treatment specific transition rates between health states are only a function of time
in the model. A frequently used approach for cost-effectiveness analysis of cancer treatments are partitioned survival
models. However, the main limitation is that extrapolated parametric PFS and OS curves for a given treatment may cross.
This will not be case with Markov models and, as such, are preferred as long as time-varying transition rates between
health states can be estimated that reflect the actual PFS and OS of the treatments compared. As far as we know, the
method presented in this paper is the first to facilitate this based on reported aggregate level data. In order to obtain the
input parameter estimates for a model-based cost-effectiveness analysis we need to define a baseline model and a NMA
model. The baseline model provides estimates for the absolute effect with the reference treatment, which in this case
are the time-varying log-hazard rates between each of the three health states. The NMA model provides estimates of the
relative treatment effects of each intervention in the network relative to the reference treatment, which in this case are the
time-varying log hazard ratios. The absolute effect with each treatment is obtained by adding the relative treatment effects
from the NMA to the absolute effect with the reference treatment from the baseline model, and subsequently transforming
these to the natural scale by inverting the log-link function.40 In the current example we used the RCT evidence base to
estimate the baseline meta-analysis model as well as the NMA model. However, for an actual cost-effectiveness analysis
it is recommended using an evidence base that reflects expected outcomes with the reference treatment for the target
population in routine practice for the baseline model, preferably a large long-term routine practice observational study.
If that is not available, a meta-analysis of the most relevant or recent trials can be considered.

The estimates obtained with the proposed evidence synthesis models can also be used in semi-Markov individual-level
simulation models (ie, models where some transitions are affected by time in an intermediate state). For example,
imagine a cost-effectiveness model of first-line cancer treatment consisting of the three health states stable, progres-
sion, and death. The stable-to-progression and stable-to-death transitions can be estimated based on first-line trials
using the proposed multi-state (network) meta-analysis method. The progression-to-death transitions in these tri-
als no longer represent current standard of care and we need to estimate these transition rates based on overall
survival data from second line trials of current treatment using a separate (network) meta-analysis model. Simi-
larly, we can use the proposed evidence synthesis models in the context of semi-Markov treatment sequence mod-
els. Imagine a model consisting of four health states: (1) stable disease with first line treatment, (2) progression
with first line treatment/stable disease with second line treatment, (3) progression with second line treatment,
and (4) death. First-line treatment transitions from stable-to-progression and stable-to-death are estimated with one
multi-state (network) meta-analysis model based on first line trials, and the second-line treatment transitions from
stable-to-progression, stable-to-death, and progression to death (reflecting third line treatment and beyond) are esti-
mated with another multi-state (network) meta-analysis model based on second line trials. In general, for the transitions
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in a simulation model for which the “clock is reset” a separate multi-state (network) meta-analysis needs to be
performed.

Time-varying transition rates from an intermediate health state, for example, progressed disease, are typically mod-
eled as a function of time since entering that state using (clock-reset) semi-Markov models. For clock-forward Markov
models, where transition rates are only a function of time in the model, typically constant transition rates are used for the
transitions from intermediate health states. However, we want to highlight that this is not a requirement and time-varying
transition rates in a clock-forward Markov model can be defended in certain situations. For example, a monotonically
decreasing hazard function (corresponding to Weibull distribution) for the progression-to-death transition means that
an individual progressing after (say) 6 months has a greater probability of dying in the subsequent month than (say) an
individual who progressed after 24 months. This reflects the possible scenario that more severe individuals or individuals
without any treatment response are more likely to die faster once progressed than less severe patients who did show an
initial response and progressed slower. In fact, this is a potential benefit of this multi-state evidence synthesis method.
Separate estimation of transition rates between health states cannot capture this aspect. To capture differential patterns
between treatments, a relative treatment effect for the progression-to-death transition can be incorporated in the evidence
synthesis model.

All studies provided PFS and OS Kaplan-Meier data in the example analyses. In principle, the NMA model can be
extended to create a shared-parameter model to incorporate studies that only provide information for PFS or only for
OS. Studies with only PFS data provide evidence regarding the stable-to-progression and stable-to-death transitions and
contribute to estimating the corresponding treatment specific hazard ratios if these are assumed fixed or exchangeable
across all studies providing direct or indirect evidence for that particular intervention. (When a meta-analysis of absolute
effects with the overall reference treatment is performed, the fixed effects or exchangeability assumption applies to the
transition rates.) Incorporating studies that only provide OS data for a particular intervention in the NMA will require
the additional assumption of fixed or exchangeable rates for one of the transitions across all studies for that intervention,
if treatment is assumed to impact more than just the stable-to-progression transition in order to facilitate parameter esti-
mation. A related topic for future research is whether and how this framework can be used to validate PFS as a surrogate
for OS and to predict OS for novel interventions for which only mature PFS is available. This will be of great benefit for
cost-effectiveness analyses.

5 CONCLUSION

We introduced a method for the joint meta-analysis of PFS and OS that is based on a non-homogenous Markovian tri-state
transition model. Arbitrary hazard rate functions can be approximated by piecewise constant hazard rates at successive
time intervals, and are flexibly modeled as (fractional) polynomial functions of time. The proposed approach relaxes the
proportional hazards assumption, extends to a network of more than two treatments, and simplifies the parameterization
of decision and cost-effectiveness analyses. The data needed to run these analyses can be extracted directly from published
survival curves.

FUNDING INFORMATION
Jeroen P. Jansen was supported by the UCSF Academic Senate Committee on Research (Academic Senate RAP Grant).
Thomas A. Trikalinos was supported in part by a grant from the National Cancer Institute (5U01CA265750). The fun-
ders had no role in the preparation, review, or approval of the manuscript or the decision to submit the manuscript for
publication.

CONFLICT OF INTEREST STATEMENT
The authors have no conflict of interest related to this work to report.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.

ORCID
Jeroen P. Jansen https://orcid.org/0000-0003-2686-9217

https://orcid.org/0000-0003-2686-9217
https://orcid.org/0000-0003-2686-9217


JANSEN et al. 3387

REFERENCES
1. Dias S, Ades AE, Welton NJ, Jansen JP, Sutton AJ. Generalised linear models. Network Meta-Analysis for Decision-Making. Hoboken, NJ:

John Wiley & Sons, Ltd; 2018:93-153.
2. West H, Dahlberg S. Clinical trials, end points, and statistics—measuring and comparing cancer treatments in practice. JAMA Oncol.

2018;4:1798.
3. Dias S, Ades AE, Welton NJ, Jansen JP, Sutton AJ. Network meta-analysis of survival outcomes. Network Meta-Analysis for

Decision-Making. Hoboken, NJ: John Wiley & Sons, Ltd; 2018:293-322.
4. Ouwens MJNM, Philips Z, Jansen JP. Network meta-analysis of parametric survival curves. Res Synth Methods. 2010;1:258-271.
5. Jansen JP. Network meta-analysis of survival data with fractional polynomials. BMC Med Res Methodol. 2011;11:1-14.
6. Jansen JP, Cope S. Meta-regression models to address heterogeneity and inconsistency in network meta-analysis of survival outcomes.

BMC Med Res Methodol. 2012;12:1-16.
7. Cope S, Chan K, Jansen JP. Multivariate network meta-analysis of survival function parameters. Res Synth Methods. 2020;11:443-456.
8. Woods B, Sideris E, Palmer S, Latimer N, Soares M. NICE DSU Technical Support Document 19. Partitioned Survival Analysis for Decision

Modelling in Health Care: a Critical Review 2017. www.nicedsu.org.uk/wp-content/uploads/2017/06/Partitioned-Survival-Analysisfinal-
report.pdf 2018.

9. Putter H, Fiocco M, Geskus RB. Tutorial in biostatistics: competing risks and multi-state models. Stat Med. 2007;26:2389-2430.
10. Guyot P, Ades AE, Ouwens MJNM, Welton NJ. Enhanced secondary analysis of survival data: reconstructing the data from published

Kaplan-Meier survival curves. BMC Med Res Methodol. 2012;12:1-13.
11. Welton NJ, Ades AE. Estimation of Markov chain transition probabilities and rates from fully and partially observed data: uncertainty

propagation, evidence synthesis, and model calibration. Med Decis Making. 2005;25:633-645.
12. Price MJ, Welton NJ, Ades AE. Parameterization of treatment effects for meta-analysis in multi-state Markov models. Stat Med.

2011;30:140-151.
13. Ades AE, Mavranezouli I, Dias S, Welton NJ, Whittington C, Kendall T. Network meta-analysis with competing risk outcomes. Value

Health. 2010;13:976-983.
14. Achana Felix A, Cooper Nicola J, Sylwia B, et al. Network meta-analysis of multiple outcome measures accounting for borrowing of

information across outcomes. BMC Med Res Methodol. 2014;14:1-16.
15. Wu Y, Cheng Y, Zhou X, et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell

lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol. 2017;18:1454-1466.
16. Mok TS, Cheng Y, Zhou X, et al. Improvement in overall survival in a randomized study that compared Dacomitinib with Gefitinib in

patients with advanced non–small-cell lung cancer and EGFR-activating mutations. J Clin Oncol. 2018;36(22):2244-2250.
17. Park K, Tan E-H, O’Byrne K, et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell

lung cancer (LUX-lung 7): a phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016;17:577-589.
18. Paz-Ares L, Tan E-H, O’Byrne K, et al. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung

cancer: overall survival data from the phase IIb LUX-lung 7 trial. Ann Oncol. 2017;28:270-277.
19. Sequist LV, Yang JC-H, Yamamoto N, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung

adenocarcinoma with EGFR mutations. J Clin Oncol. 2013;31:3327-3334.
20. Yang JC-H, Wu Y-L, Schuler M, et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma

(LUX-lung 3 and LUX-lung 6): analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015;16:141-151.
21. Wu Y-L, Zhou C, Hu C-P, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced

non-small-cell lung cancer harbouring EGFR mutations (LUX-lung 6): an open-label, randomised phase 3 trial. Lancet Oncol.
2014;15:213-222.

22. Costa C, Molina-Vila MA, Drozdowskyj A, et al. The impact of EGFR T790M mutations and BIM mRNA expression on outcome in
patients with EGFR-mutant NSCLC treated with erlotinib or chemotherapy in the randomized phase III EURTAC trial. Clin Cancer Res.
2014;20(7):2001-2010.

23. De Marinis F, Vergnenegre A, Passaro A, et al. Erlotinib-associated rash in patients with EGFR mutation-positive non-small-cell lung
cancer treated in the EURTAC trial. Future Oncol. 2015;11:421-429.

24. Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with
advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet
Oncol. 2012;13:239-246.

25. Wu Y-L, Zhou C, Liam C-K, et al. First-line erlotinib versus gemcitabine/cisplatin in patients with advanced EGFR mutation-positive
non-small-cell lung cancer: analyses from the phase III, randomized, open-label, ENSURE study. Ann Oncol. 2015;26:1883-1889.

26. Zhou C, Wu Y-L, Chen G, et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR
mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet
Oncol. 2011;12:735-742.

27. Zhou C, Wu YL, Chen G, et al. Final overall survival results from a randomised, phase III study of erlotinib versus chemotherapy as first-line
treatment of EGFR mutation-positive advanced non-small-cell lung cancer (OPTIMAL, CTONG-0802). Ann Oncol. 2015;26:1877-1883.

28. Han J-Y, Park K, Kim S-W, et al. First-SIGNAL: first-line single-agent iressa versus gemcitabine and cisplatin trial in never-smokers with
adenocarcinoma of the lung. J Clin Oncol. 2012;30:1122-1128.

29. Mitsudomi T, Morita S, Yatabe Y, et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring
mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 2010;11:121-128.

http://www.nicedsu.org.uk/wp-content/uploads/2017/06/Partitioned-Survival-Analysisfinal-report.pdf
http://www.nicedsu.org.uk/wp-content/uploads/2017/06/Partitioned-Survival-Analysisfinal-report.pdf


3388 JANSEN et al.

30. Fukuoka M, Wu Y-L, Thongprasert S, et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label,
first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non–small-cell lung cancer in Asia
(IPASS). J Clin Oncol. 2011;29:2866-2874.

31. Mok TS, Wu Y-L, Thongprasert S, et al. Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N Eng J Med. 2009;361:947-957.
32. Inoue A, Kobayashi K, Maemondo M, et al. Updated overall survival results from a randomized phase III trial comparing gefitinib

with carboplatin–paclitaxel for chemo-na𝚤 ̈ve non-small cell lung cancer with sensitive EGFR gene mutations (NEJ002). Ann Oncol.
2012;24:54-59.

33. Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non–small-cell lung cancer with mutated EGFR. N Eng J Med.
2010;362:2380-2388.

34. Han B, Jin B, Chu T, et al. Combination of chemotherapy and gefitinib as first-line treatment for patients with advanced lung
adenocarcinoma and sensitive EGFR mutations: a randomized controlled trial. Int J Cancer. 2017;141:1249-1256.

35. Yang JC-H, Kang JH, Mok T, et al. First-line pemetrexed plus cisplatin followed by gefitinib maintenance therapy versus gefitinib
monotherapy in east Asian patients with locally advanced or metastatic non-squamous non-small cell lung cancer: a randomised, phase
3 trial. Eur J Cancer. 2014;50:2219-2230.

36. Yang JC-H, Srimuninnimit V, Ahn M-J, et al. First-line Pemetrexed plus cisplatin followed by Gefitinib maintenance therapy versus Gefi-
tinib monotherapy in east Asian never-smoker patients with locally advanced or metastatic nonsquamous non–small cell lung cancer:
final overall survival results from a randomized phase 3 study. J Thorac Oncol. 2016;11:370-379.

37. Plummer M. JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling; 2003. Proceedings of the 3rd International
Workshop on Distributed Statistical Computing (DSC 2003), March 20-22, Vienna, Austria. ISSN 1609-395X.

38. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2014.
39. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian measures of model complexity and fit. J R Stat Soc Series B Stat Methodol.

2002;64:583-639.
40. Dias S, Ades AE, Welton NJ, Jansen JP, Sutton AJ. Network meta-analysis within cost-effectiveness analysis. Network Meta-Analysis for

Decision-Making. Hoboken, NJ: John Wiley & Sons, Ltd; 2018:155-178.

SUPPORTING INFORMATION
Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Jansen JP, Incerti D, Trikalinos TA. Multi-state network meta-analysis of progression
and survival data. Statistics in Medicine. 2023;42(19):3371-3391. doi: 10.1002/sim.9810

APPENDIX A. CONSTRUCTING DATASET FOR ANALYSES

Data inputs required are the coordinates extracted from digitally scanned PFS and OS Kaplan-Meier curves: time points
(u), corresponding survival probabilities (su), and corresponding population size at risk (nu). These points must capture
all steps in the curve, and may require adjustments to the extracted coordinates to ensure the survival probabilities are
decreasing with time. For both curves it should include the times at which numbers at risk are reported below the curve.

The total follow-up time can be partitioned into M successive non-overlapping intervals indexed by m = 1, … ,M. We
refer to interval m as Um and write u ∈ Um to denote um ≤ u < um+1. The length of Um isΔum = um+1 − um. For each time
interval m, we want to obtain four data points: At the beginning of the interval, um; at 1/3 of the length of the interval,
um + 1

3
Δum, which we define as um+ 1

3
; at 2/3 of the length of the interval, um + 2

3
Δum, which we define as um+ 2

3
; and at the

end of the interval, um+1. It is desirable to have the time intervals defined in such a way that (some) of these time points
are aligned with the time point for which the size of the at-risk population is reported below the published Kaplan-Meier
curves, and are the same for PFS and OS where available. For the current study, we used intervals with a length of three
months.

If no PFS or OS proportion have been recorded for a specific time point of interest (ie, whole months), a corresponding
value for su can be obtained by linear interpolation of the first available extracted scanned survival proportions before and
after this time point.

When the population nu is not reported below the PFS and OS Kaplan-Meier curve for certain time points u, it can be
imputed. First, based on the reported size of the at-risk population at subsequent time points (nu+1), nu will be estimated
according to nbc

u = nbc
u+1∕(

su+1

su
). With this ‘backward calculation’ approach we implicitly assume that censoring occurs

before the events happen within a time interval. However, this approach is not feasible if there is no information regarding
the at-risk population for time intervals beyond the at-risk population reported at a certain time point. In other words, this
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approach is only feasibly for intervals up to the latest time point for which population is reported. Next, nu will be estimated
according to nfc

u = nfc
u−1∕(

su
su−1
) . The disadvantage of this ‘forward calculation’ approach is that censoring is ignored and

the sample size potentially too large for those timepoints. For intervals where both nbc
u and nfc

u was calculated, the actual
estimate for the population at-risk is calculated as: nu = min(nbc

u ,n
fc
u ) to ensure the sample size is not overestimated. For

time points where nbc
u could not be calculated, nu = nfc

u .
Based on the subsequent su for the four points at each interval (i.e. sum , sum+ 1

3
, sum+ 2

3
, and sum+1 ), three conditional

survival proportions are obtained:
su

m+ 1
3

sum
,

su
m+ 2

3

sum
, and

sum+1

sum
. The corresponding sample sizes are defined as nc

u = num . The
corresponding observed number of patients who have not yet experienced progression or death are calculated according
to rc

u = nc
u ∗ (

su
sum
).

Applying this algorithm to PFS and OS of each arm i of each trial k, we get a data set with ncPFS
iku , rcPFS

iku , ncOS
iku and rcOS

iku .
We set-up the event dataset such that every row represents one time interval with ncPFS

iku , rcPFS
iku , ncOS

iku and rcOS
iku corre-

sponding to um+ 1
3
, um+ 2

3
, and um+1. In addition, each row has a variable related to follow-up time um+ 1

3
, three variables

related to um+ 1
3
− um, um+ 2

3
− um, and um+1 − um, the study number, and study-arm number within that study.

In addition to the event dataset, we create a study dataset indicating the compared interventions in each study along
with the number of study arms. See the online supplementary material for example data structures.

APPENDIX B. STATES AND BETWEEN-STATE TRANSITION RATES

B.1 Dynamic transitions–Problem specification
Figure 1 represents a closed dynamic system (Sik(u) + Pik(u) + Dik(u) = 1) whose evolution is determined by a known
initial condition at time u = 0 and three differential equations:

(Sik(0),Pik(0),Dik(0)) = (1, 0, 0)
𝜕Sik(u)
𝜕u

= −Sik(u)hSP
ik (u) − Sik(u)hSD

ik (u)

𝜕Pik(u)
𝜕u

= Sik(u)hSP
ik (u) − Pik(u)hPD

ik (u)

𝜕Dik(u)
𝜕u

= Sik(u)hSD
ik (u) + Pik(u)hPD

ik (u) (B1)

with hSP
ik (u), hSD

ik (u), and hPD
ik (u) the time-varying hazard rates for the transitions in the figure.

B.2 Approximating arbitrary hSP
ik

, hSD
ik

, and hPD
ik

We can approximate arbitrary hazard rate functions with a set of discontinuous constant hazard rates over successive
time intervals. We prefer this approximation because the system Equation (B1) can be solved analytically when the tran-
sition rates are constant using the the eigenvalue method for first-order differential equations. For u ∈ Um Equation (B1)
become:

(Sik(um),Pik(um),Dik(um)) = [known]
𝜕Sik(u)
𝜕u

= −Sik(u)hSP
ikm − Sik(u)hSD

ikm

𝜕Pik(u)
𝜕u

= Sik(u)hSP
ikm − Pik(u)hPD

ikm

𝜕Dik(u)
𝜕u

= Sik(u)hSD
ikm + Pik(u)hPD

ikm (B2)
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B.3 Analytic solutions for Sik(u), Pik(u), and Dik(u)where u ∈ Um
Write the system in Equation (B2) in matrix form:

⎛
⎜
⎜
⎜
⎝

𝜕Sik(u)
𝜕u

𝜕Pik(u)
𝜕u

𝜕Dik(u)
𝜕u

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

− hSP
ikm − hSD

ikm 0 0
hSP

ikm −hPD
ikm 0

hSD
ikm hPD

ikm 0

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

Sik(u)
Pik(u)
Dik(u)

⎞
⎟
⎟
⎟
⎠

, or

𝜕Sik(u)
𝜕u

= AikSik(u) (B3)

with the obvious notational correspondence between the two equations. For u ∈ Um the system is homogenous and its
general solution is the superposition:

Sik(u) = c1,ikv1ike𝜆1,ik(u−um) + c2,ikv2ike𝜆2,ik(u−um) + c3,ikv3ike𝜆3,ik(u−um) (B4)

where 𝜆1,ik, 𝜆2,ik, and 𝜆3,ik are the eigenvalues of the coefficient matrix Aik. v1ik, v2ik, and v3ik are the corresponding
eigenvectors, and c1,ik, c2,ik, c3,ik scalar constants to be identified from the initial condition in Equation (B2). In our
case:

𝜆1,ik = −hSP
ikm − hSD

ikm

𝜆2,ik = hPD
ikm

𝜆3,ik = 0 (B5)

The eigenvectors are:

v1ik =

(
hPD

ikm − hSP
ikm − hSD

ikm

hSD
ikm − hPD

ikm

,

hSP
ikm

hSD
ikm − hPD

ikm

, 1

)′

v2ik = (0,−1, 1)′

v3ik = (0, 0, 1)′ (B6)

Identification of constants in the general solution
The constants c1,ik, c2,ik, c3,ik are identified from the proportions at the beginning of Um. Setting u = um in the general
solution, and using the initial condition in Equations (B1) and (B2) we obtain:

c1,ik =
Sik(um)

v11,ik

c2,ik = Sik(um)
v12,ik

v11,ik
− Pik(um)

c3,ik = 1 − Sik(um) −
Sik(um)

v11,ik
− Sik(um)

v12,ik

v11,ik
(B7)

where vxy,ik is element x of eigenvector y.

Solution for Sik(u), u ∈ Um
Substituting c1,ik, c2,ik, c3,ik from Equations (B7) in (B4) we obtain for Sik(u):

Sik(u) = c1,ikv11,ike𝜆1,ik(u−um) + c2,ikv21,ike𝜆2,ik(u−um) + c3,ikv31,ike𝜆3,ik(u−um) (B8)

which becomes:

Sik(u) = Sik(um)e−(h
SP
ikm+hSD

ikm)(u−um)
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Solution for Pik(u), u ∈ Um
Substituting c1,ik, c2,ik, c3,ik from Equations (B7) in (B4) we obtain for Pik(u):

Pik(u) = c1,ikv12,ike𝜆1,ik(u−um) + c2,ikv22,ike𝜆2,ik(u−um) + c3,ikv32,ike𝜆3,ik(u−um) (B9)

which becomes:

Pik(u) = Pik(um)e−hPD
ikm(u−um) +

Sik(um)hSP
ikm(e

−(hSP
ikm+hSD

ikm)(u−um) − e−hPD
ikm(u−um))

hPD
ikm − hSP

ik − hSD
ikm

Solution for Dik(u), u ∈ Um
Using Equations (B1), (B8), and (B9) we obtain:

Dik(u) = 1 − Sik(u) − Pik(u) (B10)
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