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Non-randomized studies aim to reveal whether or not interventions are effective in real-life clinical practice, and
there is a growing interest in including such evidence in the decision-making process. We evaluate existing meth-
odologies and present new approaches to using non-randomized evidence in a network meta-analysis of random-
ized controlled trials (RCTs) when the aim is to assess relative treatment effects. We first discuss how to assess
compatibility between the two types of evidence. We then present and compare an array of alternative methods
that allow the inclusion of non-randomized studies in a network meta-analysis of RCTs: the naive data synthesis,
the design-adjusted synthesis, the use of non-randomized evidence as prior information and the use of three-level
hierarchical models. We apply some of the methods in two previously published clinical examples comparing
percutaneous interventions for the treatment of coronary in-stent restenosis and antipsychotics in patients with
schizophrenia. We discuss in depth the advantages and limitations of each method, and we conclude that the
inclusion of real-world evidence from non-randomized studies has the potential to corroborate findings from
RCTs, increase precision and enhance the decision-making process. Copyright © 2017 John Wiley & Sons, Ltd.
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1. Introduction

Pairwise and network meta-analyses (NMAs) are often limited to synthesizing evidence from random-
ized controlled trials (RCTs). NMAs frequently disregard evidence from non-randomized studies
(NRSs) because the authors assume that estimates of relative treatment effects are more likely to be bi-
ased, especially when confounding has been inadequately addressed. When non-randomized evidence is
included in an NMA, this amplifies concerns about transitivity and consistency assumed by the method,
and fears that results may be very precise, yet biased. But interest in including NRSs in the NMA syn-
thesis and decision-making process is growing [1-5]. Although RCTs are considered the most reliable
source of information on relative treatment effects, their strictly experimental setting and inclusion
criteria may limit their ability to predict results in real-world clinical practice [6]. NRS-based estimates
of treatment effects may complement evidence provided by RCTs and potentially address some of their
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limitations. However, less than 4% of the NMAs published until the end of 2012 included at least one
NRS (10 out of 261 identified NMAs) [7].

Expert opinion is required to formulate quantitative statements about the amount of bias propagated
by NRSs in a body of evidence [8]. A recent review summarized methods that account for potential bias
from non-randomized evidence in a pairwise meta-analysis [9]. These include an additive bias model
that accounts for both external and internal biases in studies [10]; the confidence profile method [11];
likelihood adjustments [12]; and multiple-bias models [13]. Schmitz et al. [14] propose three different
methods to combine data from different study designs in an NMA: ‘naive’ pooling; use of non-
randomized evidence as prior information; and a three-level hierarchical model.

In this paper, we present statistical methods for combining randomized and non-randomized evidence
in an NMA, and we discuss their merits and limitations. We confine ourselves to the case where NMA is
used to infer about the relative effects of health interventions. To this end, we consider only comparative
NRSs that aim to estimate relative treatment effects. These include observational studies as well as
comparative clinical trials that do not employ randomization.

2. Description of the motivating examples

2.1. Percutaneous interventions for the treatment of coronary in-stent restenosis

A previously published NMA synthesized aggregate data from 28 published RCTs (5914 patients) that
compared eight different percutaneous interventional strategies for the treatment of coronary in-stent
restenosis [15]. The follow-up in the included studies ranged from 6 to 60 months after the indexed
intervention, and several clinical outcomes were considered; we focus on the dichotomous outcome
‘target—lesion revascularization’. Results were synthesized using the odds ratio (OR).

In addition to the RCTs, we identified data from six NRSs that provide evidence about target—lesion
revascularization on five interventions. The studies included a total of 1113 patients in 14 different
cohorts. The network is depicted in panel A, Figure 1. Detailed information about the included NRSs
can be found in Section 4 of the Appendix.

Panel A

Figure 1. Networks of evidence for A) percutaneous interventions for coronary in-stent restenosis, and B) anti-

psychotics for schizophrenia. Dark grey nodes correspond to treatments compared in RCTs only; light grey nodes

are examined in RCTs and NRSs. The size of each node is proportional to the number of studies that examine the

corresponding treatment. The thickness of edges is proportional to the number of patients included in the studies

that made the corresponding comparison. Codes for percutaneous interventions (Panel A): A =balloon angio-

plasty, B=bare metal stents, C=drug-coated balloons, D=everolimus-eluting stents, E = paclitaxel-eluting
stents, F=rotablation, G =sirolimus-eluting stents, H=vascular brachytherapy.
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2.2. Antipsychotic drugs in schizophrenia

The randomized evidence in this example consists of aggregate per-arm data from 167 RCTs (36871
patients) which compared 15 antipsychotic drugs and placebo in patients diagnosed with schizophrenia
[16]. Change in symptoms (efficacy) was measured 4—12 weeks after randomization, based on the brief
psychiatric rating scale or the positive and negative syndrome scale. We use the standardized mean dif-
ference (SMD) to synthesize data. Using SMD as the effect measure enables the meta-analysis of studies
that employ different scales, and it was also used in the original analysis [16]; researchers should note,
however, that the use of SMD may be problematic under circumstances [17]. Study-level information
was available for participant’s mean age and duration of illness.

Non-randomized evidence consists of Individual Participant Data (IPD) from a large observational
study (Schizophrenia Outpatient Health Outcome) with 8873 adult patients from 10 European countries,
who were treated with five different antipsychotics during a 3-year time frame [18]. Short-term change
in symptoms was measured at three months, based on the Clinical Global Impression scale. The network
is depicted in panel B, Figure 1. Because we have signed non-disclosure agreements with our industry
partner who provided the observational data we use in this example, we code treatments as 1-16.

3. Statistical methods

We present the methods assuming that relative treatments from non-randomized evidence have been es-
timated using valid epidemiological and statistical methods that aim to minimize bias if possible. An
overview of such methods can be found in Faria et al. [3]. When considering the inclusion of NRS
for which IPD are not available, extra caution is warranted as the aggregated reported effect estimates
may originate from suboptimal analyses. In any case, the quality of the evidence provided by the iden-
tified NRSs needs to be critically appraised. The recently proposed ROBINS-I tool can be used to eval-
uate the risk of bias in estimates obtained from studies that did not use randomization [19]. If the
identified NRSs are believed to have a very high risk of selection bias, their inclusion in NMA would
be difficult to defend.

None of the NRSs about the effects of percutaneous interventions for coronary in-stent restenosis pro-
vided IPD. To estimate the SMDs for the antipsychotics from IPD in Schizophrenia Outpatient Health
Outcome, we use regression adjustment analysis because there was enough overlap between the distri-
butions of patient characteristics across treatment groups [3]. After consulting with expert psychiatrists
to indicate important patient-level covariates, the SMDs from the non-randomized data were adjusted for
baseline severity of the illness, age, gender and duration of illness.

In Section 3.1, we discuss the standard NMA model and fix notation. In Section 3.1, we describe
methods for identifying possible discrepancies between randomized and non-randomized evidence. In
Section 3.3, we present methods for synthesizing the two sources of evidence, assuming that no impor-
tant differences have been found between them. We also describe the similarities and differences
between the methods. Additional details for all models can be found in the Appendix.

3.1. Standard NMA model with aggregated data

The usual hierarchical, random-effects (RE) NMA model [20,21] synthesizes data from all available
studies to estimate the summary treatment effect, uyy, and the heterogeneity standard deviation of the
random effects, 7yy, for each treatment comparison X vs. Y. Assume that for a two-arm XY study J,
we observe the relative treatment effect d;xy, along with a standard error, s;yy. The model is then written
as:

dixy~N (anY, S_,?Xy)

HjX y~N (#XY) T)Z(Y)

(1

We assume consistency, i.e. uxy=uxz — iyz for any choice of treatments X, Y and Z. This reduces the
number of parameters and sets it equal to the number of treatments in the network minus one. Choosing
treatment A as the reference, it is sufficient to estimate x4y for all treatments X# A; these are called the
basic parameters. All other treatment effects can be obtained as linear combinations of the estimated 4 y-
Treatments can be ranked by any measure that summarizes the overlap between the estimated
]
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distributions of x4y [22]. An assumption commonly employed to facilitate the estimation of the hetero-
geneity parameters is to assume zyy=1 for all treatments X and Y [23]. We use this assumption through-
out this article for simplicity, although it is not necessary for any of the methods discussed below. For
the inclusion of multi-arm studies, the model described above is expanded to allow for both within
and between-study correlations of the observations by using multivariate distributions. For a comprehen-
sive review of standard NMA methodology, we refer the reader to our recent publication [24].

3.2. Assessing the agreement within and across randomized and non-randomized evidence

An NMA of RCTs should be internally consistent: information from direct and indirect sources of evi-
dence for each treatment comparison should agree. The presence of inconsistency can be tested statisti-
cally [25], and any disagreements could be explored in subgroup analysis or network meta-regression. In
the presence of large unexplained inconsistency, NMA may be inappropriate. If no substantial inconsis-
tencies are found in the NMA of RCTs, one can proceed with the evaluation of the agreement between
randomized and non-randomized evidence. Disagreements between randomized and non-randomized
evidence might be due to confounding in the non-randomized evidence, important differences in treat-
ment effect modifiers across treatment groups of the NRSs, systematic differences in the definition of
treatments between experimental and real-world settings (e.g. differences in dosages, modes of admin-
istration, adherence, etc.) or differences in patient characteristics. Inclusion criteria in RCTs are usually
strict, so patients included in randomized studies may systematically differ from patients included in
studies of real-world clinical settings.

Examination of differences between direct and indirect evidence can be formalized by graphical and
statistical comparison of the following information for each pairwise comparison XY:

(1) direct randomized evidence, from XY randomized trials;

(2) indirect randomized evidence for XY, from the network, after excluding all direct XY studies;
(3) direct non-randomized evidence, from NRSs that include X and Y treatment arms.

(4) indirect, non-randomized evidence.

The four sources of evidence are independent, and they can be formally compared with statistical
tests. The tests for inconsistency are, however, low powered, and the usefulness of formal statistical in-
ference will be limited [26]. Note that differences between (i) and (ii) correspond to the notion of incon-
sistency in NMA [27].

Another, informal way to infer about agreement between randomized and NRSs is to compare the
estimated heterogeneity parameters between the two different datasets. If NRSs are very different
from RCTs, their inclusion into the network shall lead to an important increase in the heterogeneity
parameter.

If researchers identify a source of disagreement between randomized and non-randomized evidence,
they can perform analyses that account for it and improve comparability across the different sources of
evidence. Cooper et al. [28] and Salanti et al. [29] presented a general network meta-regression frame-
work for including study-level covariates in an NMA. We discuss network meta-regression models in
more detail in Section 1 of the Appendix. Concerns about limited power and ecological bias are just
as relevant in network meta-regression as in conventional meta-regression. Additionally, using network
meta-regression in practice might prove to be difficult or even completely infeasible, e.g. if there is no
usable information on important study-level covariates. Other models beyond network meta-regression
might be useful in addressing specific sources of heterogeneity and inconsistency. Differences in the def-
initions of the treatments could be explicitly modeled using previously presented approaches [30,31].
When there are differences in the way that the outcomes are measured or reported (e.g. at different time
points or using different scales), multiple outcomes NMA could be employed [32-34].

Researchers should note that even in the case of agreement between randomized and non-randomized
evidence it may be inappropriate to perform a joint NMA. Epidemiological assessment of the compati-
bility of the various sources of data should always be performed by a content expert before undertaking
any form of joint synthesis. The identified NRSs need to be examined on whether or not they are suffi-
ciently similar in terms of population, intervention, comparator and outcomes with the ones specified in
the research question that the review is aiming to answer [2]. When a NRS is deemed to be incompatible
with the specific aims of the research question, it should be excluded from all analyses, irrespective of
whether its findings happen to agree with those from the RCTs.
]
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3.3. Methods for combining randomized and non-randomized evidence

If the NMA of RCTs is consistent and provided that there is no evidence of substantial disagreement be-
tween the randomized and the (adjusted) non-randomized evidence, synthesis of data is warranted. Be-
low, we outline different approaches to synthesis and summarize their basic characteristics in Table I.
We distinguish three main methodological approaches: (i) synthesis of non-randomized and randomized
studies where information from NRSs is manipulated to reflect confidence in the study findings; (ii) con-
structing informative prior distribution from the non-randomized evidence and subsequently use it in the
NMA of RCTs; and (7ii) three-level hierarchical models, where one level of the model accounts for dif-
ferences in RCT and NRS designs.

Before embarking on these adjusted analyses, investigators can obtain an initial insight of the effect of
including NRSs in the network by synthesizing all data from all studies (‘naive’ analysis) [14].

(A) The ‘Design-adjusted’ evidence synthesis

This approach synthesizes randomized and NRSs, after adjusting the mean effect sizes and/or the var-
iance of the latter. In a two-armed NRS j the point estimate is shifted by f8;, where f; is a bias term. The
variance of the mean effect is also inflated (divided by a factor w;, with 0 <w; <1), so that the study’s
weight in the meta-analysis decreases. The investigator must define not only values for each set of §; but
also the direction of bias; that is which treatment is assumed to be ‘favored’. The standard NMA model
of Equation (1) is modified as follows:

§2
deY~N< hixy + B, JXY)

Wi

Oxy~N (yy, toy)

For a multi-armed study j with T} treatment groups, a bias vector ﬁ'] with 7;— 1 elements needs to be
specified, along with w; to 1nﬂate the within-study variance—covariance matrix of the observations.
Estimation of heterogeneity variances can be performed as usual in NMA, e.g. using likelihood methods,
the methods of moments or within a Bayesian framework. The parameters f; or w; can be set equal to
fixed values or can be treated as random variables within a Bayesian framework. A Bayesian approach
offers maximum flexibility and would allow us to assign prior distributions to f; or w;. Note that if a
prior distribution is assigned to f; then there is no need to do any additional down-weighting using
w;, because the additional uncertainty incorporated in B; will result to a down-weighting of study ;.
These prior distributions can be specified to reflect potential deficiencies in the NRSs. For example,
we may assign a prior for w; centered to values above 0.5 or even close to one to a well-conducted
NRS with low or moderate risk of bias and population, intervention, comparator and outcome character-
istics that are relevant to the research question. In contrast, we could assign a distribution for w; that is
centered at low values below 0.5 or close to O to a NRS of high risk of bias or a NRS that does not quite
address the research question. Alternatively, f; or w; can be treated as random variables exchangeable
across the included NRSs [35]. In the presence of discrepancies between NRSs and RCTs and if w;
are treated as random variables, their posterior will be centered around smaller values limiting the effect
of the NRSs [36].

Even though NRSs are generally considered to be at higher risk of bias [1], it may be hard to predict
the direction (and also the magnitude) of possible biases in treatment effects [37—-41], and this, in turn,
makes it hard to pinpoint values for $; and w;. Biases in estimates of relative effects from NRSs may also
depend on the method used to obtain them. Different methods used to estimate relative treatment effects
from a NRS could give different results, making it harder to quantify potential biases. We recommend
that researchers vary the amount of confidence they place on the non-randomized evidence by varying
the value of wy, and thus gauge the effect of non-randomized evidence on the model estimates. Setting
all w;~ 0 corresponds to an NMA of only RCTs. Setting larger values w; places more confidence in non-
randomized estimates. Setting all w;=1 is equivalent to the naive model described above, where results
from the NRSs are taken at face value. We do not recommend using values w;> 1, which place more
confidence on the NRSs.

Eliciting expert opinion methods is needed to provide a range of plausible values for ; and w;. Turner
et al. [8] discuss how to elicit expert opinion regarding the bias parameters, and how to pool information
from different experts. We previously described another method that can be used to pool expert opinion
]
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for a parameter ranging from 0 to 1 (such as w;) which is based on beta distributions [32]. In this method
each expert opinion can be weighted according to the expert’s experience in the field. An approach al-
ternative to expert opinion is to use information from previously published meta-epidemiological studies
(e.g. Anglemyer et al. [41]) using a model such as the one presented by Welton et al. [42].

(B) Using non-randomized evidence as prior information

Most NMAs with RCTs are done within a Bayesian framework [7], and non-informative priors are
typically assumed for all basic parameters w4y In the presence of non-randomized evidence, however,
these priors could be informative. The analysis is performed in two steps. First, a meta-analysis (or an
NMA, if possible) uses the non-randomized evidence to estimate mean relative treatment effects for
some (or all) of the basic parameters. The (posterior) distributions estimated in this first step can be
‘adjusted’ for bias (by adding a bias parameter S to the mean and dividing the variance by w). Then,
these distributions are used in a second step as prior distributions for (some, or all of) the basic
parameters of the NMA model which includes only RCTs. There are three different ways to construct
informative priors. Expert opinion is needed for each one of them, for setting the values needed to
adjust NRS.

The first approach is to start by synthesizing non-randomized evidence to estimate ,&Es with a corre-

sponding variance VQ’?S. This estimated variance VX@S incorporates both the sampling error and hetero-

geneity, so that the distribution N (/}ﬁ/ﬁs, VX)?S) corresponds to the so-called ‘predictive distribution’

[43]. Then, down-weighting of the non-randomized evidence is achieved by assuming
sy N (ﬁﬁs +Buxs VX)?S /Wax ), where B,y is a comparison-specific bias parameter and 0 <w, < 1
is an inflation factor that quantifies the confidence to be placed in the non-randomized evidence
for AX [14]. The model can be extended to incorporate uncertainty in these two parameters by
assigning an informative prior distribution to f,y or to way (but not both). When the w parameters
are assumed to be random, their posterior distribution depends on the agreement between the
sources of evidence. When randomized and non-randomized evidence disagree, w will obtain
smaller values and decrease the impact of the non-randomized evidence on the pooled estimates.
Setting all S, =0 and way=1 corresponds to placing full confidence in the non-randomized evi-
dence; in such a case, and under the fixed-effect (FE) assumption, approach B becomes equivalent
to a FE naive analysis. Note that if some of the NRSs are multi-armed the corresponding estimates
on basic parameters will be correlated. In such cases, we need to use multivariate prior distributions.
For example, an A versus X versus Y NRS will provide information on w4y, uay and the corre-
sponding variance-covariance matrix; these can be used to formulate a bivariate normal prior distri-
bution on the two basic parameters.

Another method for constructing the prior is to use the exact likelihood of the non-randomized data.
The evidence provided by NRS j can be down-weighted by raising the likelihood to a power 0<a;<1;
this corresponds to the power-prior originally proposed by Ibrahim and Chen [44,45]. Dividing the var-
iance by w; (approach A) can be seen as a special case of the power prior method, where a study-specific
power a; is chosen for the likelihood of each study. In the special case of normally distributed data,
approach A and the power prior approach are equivalent: a; corresponds to w;.

A third alternative approach is to use a mixture of priors [46,47]. The prior distribution consists of two
parts; an informative prior formed by the predictive distribution as described above, and a flat (uninfor-
mative) prior. A factor 0<p <1 controls the amount of information drawn from the informative part of
the prior and thus controls the contribution of non-randomized evidence to the final results. For the spe-
cial case when normal distributions are used for both the informative and the uninformative parts of the
prior, we can calculate how the mixture parameter p relates to the variance inflation parameter w. More
details can be found in Section 3 of the Appendix.

The major difference between approaches A and B is the way that heterogeneity is accounted for in
the analysis. In approach A, there is a single heterogeneity parameter for the relative treatment effects
estimated in RCTs or NRSs. Approach B assumes two different heterogeneity parameters; one for NRSs
and one for the RCTs. This is relevant because NRSs may tend to be more dissimilar than RCTs. When
few NRSs are available (as in the example of antipsychotics), researchers cannot use a RE meta-analysis
to formulate a predictive prior distribution, unless they make some assumption about heterogeneity. For
example, the estimate from the naive analysis or empirical data can use used to construct the predictive
distributions. One important limitation of using NRSs to formulate prior distributions is that it precludes
the option to explore differences with RCTs in a network meta regression model.

I ———————— ——
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(C) Three-level hierarchical models

Three-level hierarchical models are suitable to synthesize data from studies with many different de-
signs (e.g., different RCT designs, controlled trials, cohort studies, case—control, etc.) [14,48,49]. We
present three different realizations of a hierarchical model for NMA. The main difference between them
is the way the analysis incorporates the consistency assumption. We denote the various study designs
with i. At the first level, each study is analyzed separately to obtain estimates of the relative effects of
the treatments that are compared in the study.

Model C.1 At the second level in this model, NMA (including the consistency equations) is used to syn-
thesize studies of the same design to obtain design-specific NMA estimates for the basic parameters and

the heterogeneity variance 77.

dijxy~N (Qijxy, Si)(y)

Ojixy~N (Kiay — Kiax, T7)

The model can be used to include multi-arm studies using standard NMA methodology. Although we
assume a single heterogeneity parameter within each design for simplicity, the model can be written
using comparison-specific heterogeneities. At the third level, the basic parameters are assumed to be
exchangeable across designs, which accounts for possible design-level heterogeneity, rﬁes , le.
Kiax N (tax, Tes)s Kiay N (Uay, T2 )» etc. For the case of two different study designs (RCTs and NRSs),
setting rges = 0 renders the model equivalent to approach B (with wy,=1 and S, = 0 for all basic pa-
rameters). Note that model C.1 requires an NMA to be performed for each study design using a subset of
the same set of basic parameters. This might be infeasible in practice (see Section 4 of the Appendix for
an illustration. Model C.1 cannot be used in such cases).

Model C.2 At the second level, we perform a series of pairwise, design-specific meta-analyses to obtain
summary effects for all available treatment comparisons. The meta-analyses do not impose the consis-
tency equations, but assume a common heterogeneity 77 for all treatment comparisons within design i,
which corresponds to the ‘unrelated mean effects model’ described by Dias et al. [S0]:

dleYA'N (0,1)()7, s;XY)

Oixy~N (kixy, 7;)

If the common heterogeneity assumption is relaxed the model corresponds to a series of unrelated
pairwise meta-analyses.

At the third level, a RE NMA (with heterogeneity rﬁes) uses the consistency equations to synthesize
estimates from the second level, i.e. we assume that x;xy” N (,u AY — Maxs Tim)- Model C.2 is problematic
when the dataset contains multi-arm trials, because different parameterizations of the unrelated mean
effects model can result into different estimates u;yy [50].

Model C.3 At the second level an NMA is performed separately per design. This imposes consistency
exactly as in model C.1. Again the heterogeneity within each design can be assumed to be common,
or different parameters can be assigned to different comparisons. At the third level, the estimates of
the basic-parameters and their variance—covariance matrix from the design-level NMAs are synthesized
in a new NMA, where they are treated as multi-arm studies and consistency equations are again im-
posed. This model assumes consistency twice—once within, and once across designs. At the third level,
the common heterogeneity parameter of the NMA is z3,,. Note that this model does not require all NMAs
at the second level to estimate a subset of the basic parameters.

In any three-level hierarchical model, the estimates from each study can be adjusted if appropriate, by
shifting the mean and/or inflating the variance. Alternatively, evidence from each design can be down-
weighted by inflating the variance of the estimates obtained at the second level.

A major constraint in applying models C.1, C.2 and C3 is the availability of data from many different
designs. Using an informative prior distribution for rf,es will improve estimates in the presence of few
L ________________________________________________________________________________|
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designs. This prior distribution could be formulated using expert opinion that takes into account the
expected dispersion of results in different designs. Alternatively, information of meta-epidemiological
studies that include information on multiple types of designs (e.g. RCTs, registries, pragmatic trials,
observational studies etc.) could be used to form empirical prior distributions.

3.4. Comparison of models

The three approaches presented here have similarities and, under specific circumstances, can lead to
identical or equivalent statistical models. Frequentist and Bayesian implementation of model A with
non-informative or weakly informative priors and the (necessarily Bayesian) Model B should give sim-
ilar yet not identical results. Differences between frequentist and Bayesian methods are likely to result
primarily from the estimation of heterogeneity parameters (which is assumed to be a random variable
within the Bayesian context), as any prior distribution for these types of parameters tends to be informa-
tive. It is also possible to modify the models’ characteristics, and to combine their distinctive features.
For example, the effect sizes and variances of each NRS can be adjusted separately (as in model A)
before using the three-level hierarchical model (C). Table I offers guidance for choosing a model appro-
priate to apply in practice.

4. Estimating the influence of the non-randomized evidence in the results from NMA

Once the non-randomized evidence is synthesized jointly with the randomized evidence, the credibility
of the final summary treatment effects needs to be evaluated. The evaluation should consider, among
other, the risk of bias in the included studies. One cannot exclude the possibility of residual bias due
to the inclusion of NRSs, even after excluding studies with high risk of bias or adjusting effect estimates
for relevant confounders. Although bias adjustments are usually considered only for the case of NRSs,
RCTs may also suffer from design deficiencies that may bias their results. Calculating the relative con-
tributions of the various sources of evidence is important when forming a critical appraisal of the NMA
results. This is achieved by taking into account the various design limitations as well as how much each
design is contributing to the final NMA treatment effect estimates [51].

It has been shown that each relative treatment effect estimated in an NMA can be expressed as the
weighted average of a set of direct pairwise meta-analyses [52]. The weights of pairwise meta-analyses
in estimating each NMA treatment effect form the ‘hat matrix’ [52] and can also be presented in a con-
tribution matrix [51]. Because each direct meta-analysis is the weighted average of study-specific results,
the contribution matrix can be updated to show the percentage contribution of each study in the pooled
NMA estimates. A recent application of this approach can be found in [53]. The study contributions can
be grouped to present how much evidence the randomized and NRSs finally contribute to the NMA re-
sults. The contribution matrix for an NMA can be obtained with available software, like the netmeta
command in R [54] or the netweight command in Stata [55].

Contributions can be readily calculated in approach A when the model is fitted in a frequentist setting
and can provide a percentage contribution of each study. A contribution matrix could also be estimated
in approach C. In model C.1, it is possible to calculate the contribution each design makes to each meta-
analysis of basic parameters at the third level, and then sum these contributions within each design. For
models C.2 and C.3, the contribution matrix of the NMA, which is performed at the third level (the de-
sign level), contains information on the effect of each design on the pooled summary effects.

Calculating study contributions in approach B (and generally for models fitted in Bayesian setting) is
not straightforward. A measure similar to a multivariate /* statistic introduced by Jackson et al. can be
used to estimate contributions (1123 in [56]). In an NMA model, the (T— 1)” root of the determinant of
the variance-covariance matrix (denoted here as y) measures the precision of the estimates for the basic
parameters. The contribution of the non-randomized evidence can then be approximated by the relative
decrease in y when priors with various weights are employed. For example, the model is fitted using un-
informative prior, so that yzcris based only on RCTs, and then vy, is estimated using informative priors
based on NRSs. Then, the contribution of NRS can be approximated with 13,,c = (Yaer — Van)/ Vrer-
I% s can also be used in models A and C (or any other similar model), but complications arise because
the estimate for heterogeneity may change after NRSs are included and the 112\, rs May acquire negative
values for these models. Also, it might be resource intensive to use it to calculate the contribution of each
individual study.

L ________________________________________________________________________________|
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5. Illustrative examples

We used the network of the percutaneous interventions for the treatment of coronary in-stent restenosis
to illustrate approach A, and we employed the network command in Stata [57,58]. The network of an-
tipsychotics for schizophrenia was used to illustrate approach B. The mean age and mean duration of
illness of participants are important study-level effect modifiers, and we used network meta-regression
to include them in the analysis. Because estimating heterogeneity (7) in the non-randomized evidence
is impossible in this example (there is only one NRS), we used the estimate from the naive analysis
to construct predictive distributions. To exemplify approach C, we used the antipsychotics network, after
assuming four different study categories; RCTs at low, moderate and high risk of bias (see Section 6 of
the Appendix for more detail), and also the observational study. We then treated the groups as different
designs. We used model C1 presented in Section 3.3 to synthesize the data. We fitted approaches B and
C in OpenBUGS version 3.2.2 [59,60] (codes are provided in the Appendix). For all analyses, we ran
two chains that allowed for 200000 samples after a 100000 burn-in period, and checked convergence
with the Gelman and Rubin diagnostic. Initial values were automatically generated using the default
OpenBUGS procedure.

In order to assess compatibility between the various sources of evidence we first decomposed the
randomized evidence into its direct and indirect components, and then compared them with the non-
randomized evidence. We used the network command in Stata, which implements the loop-specific
approach [61] and the node-splitting approach [27].

5.1. Assessing the agreement within and across randomized and non-randomized evidence

5.1.1. Percutaneous interventions for coronary in-stent restenosis. In Figure 2, we present the relative
treatment effects estimated from direct, indirect randomized and non-randomized evidence. For each
treatment comparison, the figure shows the treatment effects from the direct randomized evidence (from
RCTs that compare the corresponding treatments), the indirect randomized evidence (from the network
of RCTs after excluding direct evidence), the direct non-randomized evidence (from NRSs that compare
the corresponding treatments) and the indirect non-randomized evidence (from the network of NRSs
after excluding direct non-randomized evidence). Randomized and non-randomized evidence are in
reasonable agreement for most treatment comparisons. However, for some comparisons (in particular
DvsA, DvsC, EvsC and GvsB), there are considerable discrepancies. The discrepancies in EvsC and
DvsC are mainly driven by a single EC NRS [62] whose results were very different from those in RCTs
examining the same comparison. This might be due to chance or indicate important unaccounted
confounding in the NRS and differences in the population, setting and interventions between the NRS
and the RCTs.

Sources of evidence CvsA DvsA DvsC GV?E G‘;SD
Direct randomized —_ 1 —_— : :
Indirect randomized —-—: —— : : ——— | ——
Direct non-randomized | B —— 1 —:—o— —:0—
Indirect non-randomized ——+—— : —"—:— : —-:— —:—
NMA, RCTs only —_ : —_— : —.—: e — [
Naive NMA - —_— 1 — _:._ J'__
4 o2 0 2 i a0 1 2 10 1 40 1 2 3
EvsA EvsD EvsC GvsA GvsB

Direct randomized — ] ! —L R | 1
Indirect randomized =~ ————on : | : —_— : "If_
Direct non-randontized : -:—-— : _..:.._ :
Indivect domized 1 1 1 '
NMA, RCTs only —_— : :—-— —:r— —_ : _L_
Naive NMA —_ ! L e —_! A

2 0 2 00 0 1 2 01 2 3 a0 01 2 3 01 2 3

Figure 2. Relative treatment effects (log OR and their 95% confidence intervals) for target-lesion revasculariza-
tion with percutaneous interventions for coronary in-stent restenosis, estimated from the various sources of
evidence. The results from NMA using only RCTs and from NMA using both RCTs and NRS (naive NMA)
are also presented. Only treatment comparisons informed by both randomized and non-randomized evidence
are presented. Codes of interventions as per Figure 1.
_____________________________________________________________________________________|
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The heterogeneity standard deviation was estimated to be7 = 0.36 for the RCTs network and7 = 0.45
for the naive analysis. The loop-specific approach did not detect any inconsistencies in the RCTs
network or in the combined RCTs and NRSs network. The node-splitting approach showed no inconsis-
tencies in the RCTs network, but found inconsistency in the DvsA comparison in the combined RCTs
and NRSs NMA. This inconsistency is due to the difference in estimates coming from indirect random-
ized and direct non-randomized evidence as shown in Figure 2. Detailed results from these analyses are
presented in Section 5 of the Appendix.

In a real-life application, researchers would need to further explore these disagreements, scrutinizing
the identified studies in order to make a judgment on whether or not it is appropriate to pool them in a
single NMA. To further exemplify the methods, we assume that the identified differences are due to
chance, and we proceed into synthesizing the totality of the evidence in an NMA.

5.1.2. Antipsychotic drugs in schizophrenia. Figure 3 presents the estimates for treatment comparisons
for which both randomized and non-randomized evidence is available. We detected some disagreement
only for the 4v6 comparison. The confidence intervals of effects from direct randomized and non-
randomized evidence overlap to some extent, but there is a discrepancy between the estimates that
correspond to indirect randomized evidence and the evidence from the single NRS. This might indicate
that the adjustment of the non-randomized data was insufficient (e.g., due to residual confounding).
There is considerable heterogeneity in the five RCTs that make up the direct randomized evidence
(?=71%,7 = 0.33), while the prediction interval is rather broad (—1.18, 1.23) and includes the estimate
from the NRS. In such a case, heterogeneity in the RCTs that compare 4v6 should be fully explored.
Comparing estimates from an NMA of the RCTs only with estimates from the naive NMA also indi-
cated that treatment effects are in agreement between the different sources. The precision of some treat-
ment comparisons increased when non-randomized evidence were included in the network. For instance,
the width of the credible interval was reduced by 27% for the 1vs15 comparison. We compared the het-
erogeneity standard deviation before and after including the NRS and found no differences: 7 = 0.08
(95% Cr.1. (0.04, 0.12)) for the RCTs-only network, and 0.09 (0.05, 0.12) for the naive RCTs and
NRS network. The loop-specific and the node-splitting approach did not provide any strong evidence
of inconsistency either before or after adding the NRS to the network of RCTs (results are presented
in Section 7.1 of the Appendix). We conclude that we found no evidence of important disagreement be-
tween randomized and non-randomized summary effects and that synthesis of both sources is warranted.

5.2. Using the design-adjusted analysis (approach A) for the coronary in-stent restenosis example

We employ approach A where we assume that estimates from each NRS are expected to be unbiased
(#=0), with an uncertainty reflected on w. However, we want to down-weight the NRS employing
various scenarios for a common variance-inflation factor (w), for all NRSs.

Sources of evidence 1vs4 1vs5 1vs6 4vs1S S5vs15S
Direct randomized T P —— T : + i
1
Indirect randomized —:— —— : -:— | — Il ——
Direct non-randomized : — —_— : _,_.,:,_ -:-.— :
NMA, RCTs only :— _— : J'___ : —_— :
Naive NMA -:—-— —_— —f— : —_— 1
-1 0 1 2 -3 -2 -1 0 1 -2 -10 1 2 -6 -3 0 3 6 0 2 4 6 8
1vs15 4vsS 4vs6 5vs6 6vs15
Direct randomized 1 1 b 1 1
1 1 1 1 1
Indirect randomized | — — B S—— | — 1
] 1 1 1 1
Direct non-randomized |— i 1 — ] ——— I
NM4, RCTs only 1 — — - . -
Naive NMA : — e : _:'_ : b :
-20 2 46 8 3-2-10 1 -3-2-10 1 -10 1 2 3 4 0 d 2 3 4

Figure 3. Relative treatment effects (standardized mean differences SMD and their 95% credible intervals) for

improvement in symptoms scale with antipsychotics in patients with schizophrenia estimated from the various

sources of evidence. The results from NMA using only RCTs and from NMA using both RCTs and NRS (naive

NMA) are also presented. Only treatment comparisons informed by both randomized and non-randomized
evidence are presented.

I ———————— ——
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Figure 4 shows the estimated relative treatment effects for all comparisons informed by both random-
ized and NRSs for various values of confidence placed on NRSs. For some treatment comparisons
(CvsA; DvsA; EvsA; GvsA), the inclusion of the NRSs in the network corroborated the findings of
the NMA based on RCTs alone and increased the precision in the estimates. For three comparisons
(DvsC; EvsD; GvsD), the inclusion of non-randomized evidence pulled the summary effect towards
the non-effect line even for low values of w. Such a result might potentially shed doubts on whether
or not the difference in the efficacy of the corresponding interventions can be translated into difference
of real-world effectiveness, and might have interesting clinical implications. However, these changes in
the summary effect and their confidence intervals were not sufficient to change the treatment hierarchy
estimated using the surface under the cumulative ranking line [63] which remained unchanged with the
various analysis models. Results can be found in Section 5 of the Appendix.

In this example, the NRSs accounted for 16% of the total sample size in the network. In the naive
analysis, the contribution of NRSs was 20.3%. The contribution decreased to 19.0% for w=0.8;
16.5% for w=0.5 and 10.3% for w=0.2.

5.3. Using non-randomized evidence as prior information (approach B) for the schizophrenia example

In order to use the non-randomized evidence as prior information, we first needed to choose the basic
parameters appropriately (see Section 2 of the Appendix on choosing the basic parameters). The single
NRS compares treatments 1, 4, 5, 6 and 15, and consequently we could choose any of those treatments
to be the reference treatment; here, we chose treatment 1. We used the NRS to estimate a multivariate
predictive distribution for the basic parameters 1vs4, 1vs5, 1vs6 and 1vs15, and we used the heteroge-
neity estimated from the naive analysis (z = 0.09). We used a common variance inflation factor for these

logOR logOR logOR
) CvsA (95% CI) DvsA (95% CI) DvsC 500
w= P 141 (-1.90, - @ o 346, - | -1.01 (-1.95, -0.07
(RCTs only) : 1.41 (-1.90, -0.92) | 2.42 (-3.46,-1.38) : ( )
w=02 = | -1.34(-1.81,-0.87) — | LB26.117) — -0.58 (-1.32,0.16)
1
w=035 —— | -1.34(-1.81,-0.87) —— ! L89(236.-102) ——— 03409903
w=08 _ | -136(-1.85,-087) — -1.58 (-2.21,-0.95) —_— -0.22 (-0.85,0.41)
1
w=1 —r— I -138(-1.89,-0.87) — ! -155(-2.18,-0.92) ——1— -0.17(-0.80, 0.46)
(naive analysis) — T } 2- - 1-0 :)
20 -1.0 0 3.0-20-10 0 -2, -1,
logOR logOR logOR
il EvsA . (95%CD EvsC (95% CI) . EvsD (95% CI)
= —_— -1.33(-1.78, -0.88 0.07 (-0.46, 0.60 108 (0.04. 2.
(RCTs only) ! ( ) | ¢ ) : 1.08 (0.04, 2.12)
w=02 _— } -131(-1.74,-0.88) 0.03 (-0.46, 0.52) T 0.61 (-0.15, 1.37)
1
w=05 - | -127(-1.70,-0.84) 0.07 (-0.44, 0.58) —_— 0.42 (-0.23, 1.07)
]
- ST | -1.24/(-169,-0.79) 0.12 (-0.41, 0.65) —_— 0.35 (-0.24. 0.94)
]
w=1 — : S122(-169,-075) @ ——L o 0.16(-0.39.0.71) —t 0.32(-0.27.0.91)
(naive analysis) . } = : . + T T
-2.0 -1.0 0 logOR -0.5 0 0.5 lugOR 0 1.0 2.0 lo
gOR
o GvsA  esuan GvsE (95% CT) GvsD (95% C
Wi= 1 -1.34(-1.79, -0.89) . -0.01 (-0.54, 0.52) — e 1.0870.00, 2,[1)6)
(RCTs only) ' : |
w=02 — 1 -1.26 (-1.69, -0.83) 0.05 (-0.42, 0.52) : 0.66(-0.14, 1.46)
1
w=0.5 —— 1 -1.19(-1.62,-0.76) _:__ 0.08 (-0.39, 0.55) _;__ 0.49 (-0.18, 1.16)
1
w=08 — 1 -1.15(-1.60, -0.70) — e 0.09(0380.56) —_-— 0.43 (-0.20, 1.06)
1
w=1 | -L13(-160,-066)  —————pmem———— 008 (:0.41,0.57) —f—— 0.41(-0.22, 1.04)
(naive analysis) . } . } . . . r
-2.0 -1.0 0 logOR .05 0 05 0 1.0 20
- GvsB (95% CI)
w=0 —_ . 007(-054.068)
(RCTs only) 1
w=02 : 0.08 (-0.49, 0.65)
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w=08 : 0.21 (-0.38, 0.80)
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— 1 024(-035.083)
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Figure 4. Relative treatment effects (log OR and their 95% confidence intervals) for target-lesion revasculariza-

tion with percutaneous interventions for coronary in-stent restenosis estimated using approach A. Evidence from

the NRSs is given increasing weight with the parameter w. Only treatment comparisons informed by both ran-
domized and non-randomized evidence are presented. Codes of interventions as per Figure 1.
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basic parameters to explore three different scenarios: w~ Unif(0, 0.3), which places a low level of con-
fidence in the non-randomized evidence; w ~ Unif(0.3, 0.7), which places a medium level of confidence;
and w~ Unif{0.7, 1), which places a high level. The rest of the basic parameters were drawn from non-
informative distributions, N(0, 1002).

Estimates of the relative treatment effects are presented in Figure 5. For most treatment comparisons
(1vs5, 1vsl5, 4vs5, 4vs15, 5vs6, Svs15 and 6vs15), the inclusion of the single NRS in the evidence-base
confirmed the findings and increased precision of the estimates. As expected, treatment hierarchy was
robust to the various prior options. Estimates of the model parameters and surface under the cumulative
ranking values are presented in Section 7 of the Appendix.

For the first scenario, 112\, rs Was calculated to be 4.7%; for the second scenario, it was 7%; and, for the
third, it was 8.5%.

5.4. Using the three-level hierarchical model (model C1) for the schizophrenia example

We assumed that the design ‘high RoB RCTs’ and the ‘NRS’ design have the same heterogeneity
parameter denoted as 7., and that designs ‘low RoB’ and ‘moderate RoB’ pertain to 74,y &moderate-

We used four different values for w ranging from 0 (NRS excluded from the analysis) up to 1 (no
down-weighting of the NRS). In Table II, we present the model estimates only for the basic parameters
which were informed by both randomized and non-randomized sources. Comparing to the results of ap-
proach B, the most notable difference is the increased imprecision. This is because model C incorporates
an additional source of variability in the model, i.e. the heterogeneity across designs. Another interesting
finding is that NRS had a larger impact on results; for no down-weighting (w= 1), /% s was calculated to
be 14% (for the third scenario of model B in the previous section this was 8.5%). This increase of the
contribution of NRS was because this study was the only source of information for one of the four avail-
able designs in the dataset.

1vs4 (9533?&1) 1vsS . (95805:1()&1) _IVSG (95533&1)
W~ U(0, 0.3) _i_._ 0.03(-004,010) ——— 1-0.14(-022.-0.06) : 0.08 (-0.03, 0.18)
w~ U(0,3 0.7)— 0.04(-002.011) ————  .0.14(-0.22, -0.06) —————  0.06(-0.04,0.16)
W U0.7,]) ——pa————— 004 (-0.02,0.11)  ——— -0.13 (:0.21, -0.06) —_——— 0.06(-0.04,0.15)
0 3 5 T = & 5 5
1v15 4vss 4vs6
w~U,03) | 0.29 (0.15. 0.43) | 0.18 (-0.26. -0.09) —————— 0.04(-0.07.0.14)
w~ (0,3 0.7) | ——  026(0.14,039) ——— | -0.18(-026,-010) — 4. 0.02 (-0.08, 0.12)
w~U(0.7, 1) : —_—  025(0.13.037) ———— 5-0-18(-0-25~-0-10) —i—— 0.02 (-0.08, 0.11)
0 2 4 -2 1 0 21 0 1
4vs15 Svs6 Svs1S
w~U,03) | ——  025(011.038) : 022(0.09,034) — e 042(028.0.5T)
woU0.307) | 022(010,034) | ——e—— 020(0.09,032) i —_— e 0.40(0.27,0.53)
w~U(0.7, 1) E — 0.21 (0.09, 0.33) : —_——— 0.19(0.08, 0.30) : —_— 0.39(0.26,0.52)
0 2 4 0 1 2 3 0 2 4 6
6vs1S
w~U(0,03) | 0.21 (0.05,0.37)
w~U(0,30.7) | 0.20 (0.05, 0.34)
w~U(0.7, 1) : ———  0.20(0.06,0.34)

Figure 5. Relative treatment effects (standardized mean differences SMD and their 95% credible intervals)

for improvement in symptoms scale with antipsychotics in patients with schizophrenia. A large NRS is con-

tributing data to form an informative prior (approach B). Evidence from the NRS is given increasing weight

with the parameter w. Only treatment comparisons informed by both randomized and non-randomized evi-
dence are presented.
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Table II. Estimated effects and 95% credible intervals for the antipsychotics network, for basic parameters
informed both by RCTs and NRS as estimated from model C1. Larger values of w correspond to larger
down-weighting of the NRS.

Treatment comparison

Variance inflation factor (w) 1v4 1v5 1v6 1vl5

0.0 (RCTs only) 0.04 (—0.08, 0.16) —0.12 (—0.26, 0.01)  0.08 (—0.08, 0.24) 0.31 (0.11, 0.50)
0.3 0.05 (—0.04, 0.16) —0.12 (—0.23, —0.01) 0.05 (—0.08, 0.18) 0.26 (0.10, 0.41)
0.7 0.06 (—0.04, 0.16) —0.11 (—0.22, —0.01) 0.04 (—0.08, 0.17) 0.25 (0.10, 0.40)

1.0 (no down—weighting) 0.06 (—0.04, 0.16) —0.11 (—=0.22, 0.00)  0.04 (-0.08, 0.17) 0.25 (0.11, 0.41)

For w=1, the heterogeneity standard deviations were estimated 7y, =0.07 (0.01, 0.12) and
Tiow&moderate =0.06 (0.003, 0.16). The estimate for the design-level heterogeneity was 7., =0.07 (0.02,
0.13), indicating relatively small differences across different designs. These estimates did not materially
change when we used different weighting schemes for the NRS.

6. Discussion

In this article, we discussed approaches for incorporating non-randomized evidence in an NMA of
RCTs. These approaches should be employed after researchers have performed a formal assessment
of the risk of bias and the applicability of the identified studies. This is needed in order to evaluate
whether the inclusion of each study is sufficiently justified. We also argue that before performing a joint
analysis of randomized and non-randomized evidence, researchers need to ensure the compatibility of
the different pieces of evidence, for each treatment comparison. If studies are deemed incompatible a
priori (i.e. before comparing effect estimates across study designs), their inclusion in the NMA should
not be considered.

We grouped the available methods for combining randomized and non-randomized evidence in an
NMA into three categories; the design-adjusted analysis, the use of informative prior distributions and
the three-level hierarchical models. We do not recommend using the naive approach as the main method
of analysis, but it can be a useful starting point, and can provide insight about the effect of including
non-randomized evidence in the analysis. The naive approach can also be used to assess compatibility
of randomized and non-randomized evidence, via monitoring changes in network heterogeneity and
inconsistency before and after inclusion of non-randomized evidence.

The ‘design-adjusted’ approach extends the naive approach by considering the design of the studies.
The data from NRSs are ‘shifted’ and down-weighted based on external opinion about their credibility.
We recommend using this approach when resources allow for a separate assessment of bias for each
NRS. Using the non-randomized evidence to construct informative prior distributions for the basic pa-
rameters of the model is an elegant alternative for including non-randomized evidence in the NMA. A
key difference with the design-adjusted approach is in the estimation of heterogeneity, which is per-
formed separately for RCTs and NRSs. This approach might be more intuitive for clinicians, because
they typically have prior opinions about treatment effects based on their experience with patient
follow-up, monitoring and registries. Hierarchical models are more appropriate when data from studies
of several different designs are to be synthesized and account for heterogeneity within and across de-
signs. While the other methods assume that the underlying treatment effects are the same across designs,
the three-level hierarchical models assume that the treatment effects are different—but exchangeable—
across different types of studies.

In our two illustrative examples, we employed the design-adjusted approach (in-stent restenosis) and
the prior-based approach (schizophrenia), with various degrees of confidence placed to the NRSs. For
the in-stent restenosis network, the inclusion of NRSs confirmed the findings of the RCTs-only analysis
for most comparisons. For some of the comparisons, results were shifted, indicating smaller differences
in the outcome between the interventions even when low confidence was placed on the non-randomized
evidence. For the schizophrenia example, the inclusion of non-randomized evidence did not materially
impact on the conclusions of the analysis. Precision of the relative treatment effect estimates increased
only slightly when we incorporated non-randomized evidence in the analysis, because the contribution
of the single, although very large, NRS was small compared to that of 167 RCTs.
]
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Whatever method researchers choose to employ, they should keep in mind that it is difficult to predict
the magnitude or direction of possible biases introduced by including NRSs in an NMA. We thus advise
them to explore the effect of placing different levels of confidence in the non-randomized evidence be-
fore they draw final conclusions. We also recommend that all results should be evaluated after consid-
ering the relative contribution of each source of evidence in the pooled estimates. This might be
especially relevant for the case that NRSs are used to connect disconnected parts of the network of
RCTs; on such occasions, the connecting studies may acquire an unduly large contribution for (some)
of the network estimates, even after severe down-weighting.
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