
How to estimate cost-effectiveness acceptability curves, 
confidence ellipses and incremental net benefits 

alongside randomised controlled trials 
Nixon RM1, Wonderling D2, Grieve R3. 

 
1. (Address for correspondence) 

MRC Biostatistics Unit 
Institute of Public Health 
University Forvie Site 
Robinson Way 
Cambridge, UK 
CB2 2SR 
richard.nixon@mrc-bsu.cam.ac.uk 
Tel: 01223 330382 
Fax 01223 330388 

2. National Collaborating Centre for Acute Care, Royal College of Surgeons of 
England, UK 

3. Department of Public Health and Policy, London School of Hygiene & Tropical 
Medicine, UK 

 
Keywords: CEA, cost-effectiveness acceptability curve, confidence ellipse, incremental 
net benefit, central limit theorem. 
Summary 
Decision-makers require appropriate measures of the sampling uncertainty that surround 
the results of cost-effectiveness analysis. This paper uses the central limit theorem to 
derive 95% confidence intervals around the incremental net benefit, cost-effectiveness 
acceptability curves and confidence ellipses when data is collected from a single 
randomised controlled trial. The estimation of each of these measures is illustrated using 
a trial based cost-effectiveness analysis. The paper provides practical guidance for future 
researchers to follow and is designed to encourage a more widespread and informed use 
of these techniques. 



   

1 Introduction  
The last decade has seen a rapid advance in the statistical methods used in cost-
effectiveness analyses (CEA) conducted alongside randomised controlled trials (RCTs) 
[1,2]. Problems with incremental cost-effectiveness ratios (ICERs), in particular the 
intractability of the associated standard error, have been recognised and alternative 
measures developed [3-7]. A general consensus has emerged in the methodological 
literature, that incremental net benefits (INB), cost-effectiveness acceptability curves 
(CEACs) and confidence ellipses are appropriate ways of presenting the results [1,8,9]. 
National policy-making agencies, such as the National Institute for Health and Clinical 
Excellence (NICE) now insist that these measures are used as part of the formal health 
technology appraisal process [10]. Health economists and health service researchers 
therefore need to know how to present results using these methods.  
 
Methodological papers have defined CEACs [6,9,11,12], confidence ellipses [6,13], and 
standard errors (SE) for INB [2,3,6,7,8,14,15]. However, none of these papers explains, 
in a manner accessible to readers with only a basic or intermediate knowledge of statistics, 
exactly how to estimate each of the measures described.  
 
This paper therefore aims to make explicit the estimation of confidence intervals (CIs) for 
the INB, CEACs and confidence ellipses. The paper focuses on using the central limit 
theorem (CLT) to estimate these measures in CEA alongside RCTs. An application of 
these techniques is illustrated using an example from a recently published CEA. 
 

2 Methodology  
Decision makers want information on the net benefits of interventions and the uncertainty 
around them. The focus in this paper is on the use of the CLT to summarise the 
uncertainty due to sampling error that surrounds the mean estimate of net benefit. Firstly 
the notation used is defined (Section 2.1), and the relevance of the CLT in this context is 
explained (2.2). The distribution of the estimates of the population mean differences in 
costs and effects is described (2.3). Each of the measures of interest - the confidence 
intervals around the INB, the CEAC and confidence ellipses, is defined algebraically and 
its estimation is illustrated using a case study (2.4-2.6). An Excel spreadsheet 
implementing all the methodology in this paper is available to download from [16]. 

2.1 Notation 
A trial based CEA can provide the required information on the differences in mean costs 
and outcomes between trial arms (the incremental costs and effects). In this context, we 
denote by  a random variable that is the total cost for individual ijC inj K1= who is given 
treatment ; n2,1=i i is the number of individuals given treatment i. This is a variable that 
has different values that follow a population probability distribution, but which have yet 
to be observed. We assume that the costs for those individuals given treatment i are 
independently drawn from the same distribution with mean ciµ and variance , and that 2

ciσ
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the costs from the two treatment groups are independent.  denotes the random variable 

for health outcome for individual j given treatment i; 
ijE

eiµ and  are the mean and 
variance of the distribution from which this variable is drawn. 

2
eiσ

 

In order to make inferences about the population mean differences in costs and in effects, 
( 12 ccc µµµ −=∆  and 12 eee µµµ −=∆ ), we need firstly to estimate the parameters ciµ  and 

eiµ , the population means in each treatment arm. The estimates of the mean parameters 
are the sample means 
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2.2 Application of the central limit theorem (CLT) to CEA 
The CLT states that whatever the shape of the population distributions of the costs  and 

effects , the distributions of the sample means, 
ijC

ijE .iC  and .iE , will converge to normal 
distributions as ni increases. The sampling distributions have the same means as the 
population distributions but each has a variance that is ni times smaller [17]: 
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We are interested in estimating the mean cost and effect differences between arms. 
Estimates of these are the differences between the sample means, 
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2.3 Distribution of the estimates of the population mean differences in costs and in 
effects.  

As the observations from the two treatment arms are assumed to be independent, and 
since the difference between two normal distributions is also a normal distribution, the 
distributions of c∆µ̂ and e∆µ̂  are approximately 
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Here and  are the variances of the estimated population mean cost and effect 
differences respectively.  and  2

2
c∆σ 2

e∆σ
2
ciσ 2

eiσ ,1=i  are the variances of the distributions from 
which the cost and effects data from arm i are sampled. Estimates of and are 2

c∆σ 2
e∆σ
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where  and  2 are the estimates of the cost and effects distribution variance 
parameters in each trial arm. These are the sample variances in each trial arm: 

2ˆ ciσ 2ˆ eiσ ,1=i
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Costs and effects will generally be correlated. The covariance between the individual 
costs and effects data in each treatment arm are denoted by 1ceσ and 2ceσ . These 
covariances are related to the correlations 1ceρ  and 2ceρ of costs and effects data in each 
arm by  
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So if there is no correlation between costs and effects then the covariance is also zero.. 
The CLT leads us to an approximate distribution for c∆µ̂ and e∆µ̂ for large values of ni 
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where ce∆σ  is the covariance between c∆µ̂ and e∆µ̂ and BVN denotes a bivariate normal 
distribution [18]. We need to estimate ce∆σ , the covariance between the estimates of the 
population mean cost and effects difference. In Appendix A we show that  
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That is, the covariance between the estimates of the population mean cost and effect 
difference is the sum of the covariances between the cost and effects data in each arm 
divided by the respective sample sizes. An estimate of this covariance is therefore 
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 Estimates of the covariances 1ceσ and 2ceσ  are the sample covariances of the individual 
data 
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The correlation between the estimate of the population mean costs and effects difference 
is defined as 
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The next sections describe how the CLT can be applied to estimate each of the measures 
of interest in CEA, and is illustrated using a CEA based on an RCT. The trial was 
designed to evaluate the cost-effectiveness of acupuncture in the management of chronic 
headache compared with usual care [19]. The key statistics are presented in Table 1. 

2.4 Incremental net benefit (INB) 
To summarise the results of a CEA the incremental net (monetary) benefit (INB) of one 
treatment compared to another may be reported, together with a 95% CI. The INB is 
defined as 

 ceKK ∆∆ −= µµ)(INB  (14) 

where K represents the decision-makers willingness to pay for a one unit gain in health 
outcome. Thus the new treatment is cost-effective if and only if . The value 
of K is generally unknown, so it is usual to plot the estimated value of , for 
various values of K. 

0)(INB >K
)(INB K

c∆µ  and e∆µ  are estimated by c∆µ̂ and e∆µ̂ . The expected value and 

variance of are given by ceK ∆∆ −= µµ ˆˆB(K)N̂I
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The means, variances and correlation of the population mean differences can then be 
estimated using the formulae given in Section 2.3 above.  
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From Section 2.3, we know that c∆µ̂ and e∆µ̂  approximately have a bivariate normal 
distribution. Furthermore, a linear combination of normal variables is also normal, so 

 ( )])(BN̂Var[I ],)(BN̂E[IN~)(BN̂I KKK  (16) 

and therefore CIs can be constructed in the usual way: 

 cececece KKzK ∆∆∆∆∆−∆∆ −+±−=− σσρσσµµα α ˆˆˆ2ˆˆˆˆ  CI)%1(100 222
2/1  (17) 

where is the value of the standard normal distribution such that 2/1 α−z )%1(100 α− of the 
area falls within . If 2/1 α−± z 05.0=α , then 96.1975.0 =z  and a 95% CI is constructed. 

Applying the above to the case study, we can see how in this example the estimated 
incremental net benefit, , increases as the threshold value of a QALY, K, 
increases (Table 2). 

B(K)N̂I

 
The INB is greater the more value we place on each QALY gained as e∆µ̂ is positive in 
this case. The confidence intervals for the INB become wider as K increases – this is 
because the uncertainty around the value of the effect is magnified by the value of K 
placed on the effect.  

2.5 Cost-effectiveness acceptability curve (CEAC) 
Ultimately, we are interested in assessing whether one treatment is cost-effective 
compared to the other, that is, assessing whether the INB is positive. As the population 
mean costs and effects are not known exactly, but are estimated from a sample, we can 
never be certain that the INB is positive for a particular value of K. The CEAC is the 
estimated probability that  plotted against K (see Figure 1) and is defined as: 0)B(N̂I >K
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Under the CLT, the left hand side of this inequality has a standard normal N(0,1) 
distribution so 
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where is the cumulative density function of a standard normal distribution, that is 
the probability that a N(0,1) variables is less than z. Again the means, variances and 

)(zΦ
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correlation of the population mean differences are estimated as in 2.3 above. The 
calculation is repeated for various values of K. From a frequentist perspective, the CEAC 
is one minus the p-value of a one-sided test H1:INB(K)>0, plotted against K. The 
probability that the INB(K) is positive is a Bayesian concept - it is the posterior 
probability that the INB(K) is positive given the data. From a Bayesian perspective the 
population parameters have distributions.  ρσσµµ and,,, 22

ecec ∆∆∆∆

 
The CEAC for the case study is presented in Table 2 and Figure 1.  

2.6 Confidence ellipses 
To understand the uncertainty around the estimates of the population mean differences in 
costs and in effects it is useful to plot the point estimates on the cost-effectiveness plane, 
together with confidence ellipses. The frequentist definition of these is that if one were to 
repeat the experiment a large number of times, then the true incremental cost and 
incremental effect would lie in the ellipses generated this way 50%, 75% or 95% of the 
time (see Figure 2). In the Bayesian paradigm the credible ellipses are regions with a 50%, 
75% or 95% probability of containing the mean incremental cost and incremental effect. 
 
A convenient way of defining an ellipse is with the following two equations. 
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As before, 05.0=α corresponds to a 95% confidence ellipse. As the angle θ  is varied, 
taking on values between 0 and π2 radians, the ellipse will be traced out by and c∆ e∆ . 
Explanation of how these equations are derived is given in Appendix B. In practice we do 
not know these parameters, so the means, variances and correlation of the population 
mean differences are estimated by the estimates as in 2.3 above. 
 
To calculate confidence ellipses, co-ordinates can be estimated using the equations above 
for a number of values of θ  between 0 and 2π radians (Table 3). When these points are 
plotted on the cost-effectiveness plane they form ellipses. The estimated correlation 
between incremental cost and QALYs gained determines the orientation of the ellipses; in 
this case there is a modest inverse correlation between the mean incremental cost and 
effect. 

3 Discussion  
This paper uses the CLT to derive and define 95% CI around the INB, CEACs, and 
confidence ellipses. Applying the CLT provides a robust, practical way of estimating the 
sampling uncertainty surrounding the results of trial-based CEA. The estimation of each 
measure has been illustrated using a trial-based CEA with a link provided to the 
spreadsheet used [16]. The outcome of interest in a CEA is the mean incremental cost-
effectiveness for the population concerned. Cost data in particular may be drawn from 

 7



   

populations with highly skewed distributions and an advantage of the CLT is that it 
avoids assuming that the data are sampled from a normal distribution, and will give an 
asymptotically unbiased estimate of the population mean. However, this raises the 
question of what sample size is required to invoke the CLT? As Cochran [20] points out 
that there are no hard and fast rules for determining how large the sample size should be 
before assuming the CLT is reasonable. The author suggests though that, when the main 
deviation from normality of the population distribution is due to positive skewness, the 
sample size should be larger than , where 225η η  is the empirical skewness coefficient. 
One approach would therefore be to extend sample size calculations for CEA alongside 
RCTs to allow for the skewed nature of cost data, thus making it more reasonable to 
apply the CLT. An alternative would be to use the non-parametric bootstrap [21]. 
However, as O’Hagan and Stevens [22] explain the non-parametric bootstrap also relies 
on asymptotic assumptions.  
 
The methods presented apply to circumstances where the baseline characteristics of 
patients in each intervention group are similar. However in other contexts, particularly 
CEA alongside observational studies or non-randomised trials, the methods described 
may need to be extended to adjust for baseline characteristics. Different approaches have 
been described that allow the statistics described in this paper to be estimated, adjusting 
for baseline differences. The approach developed by Hoch et al [23] estimates individual 
net-benefits for each patient in a trial for a given level of K and then uses ordinary least 
squares (OLS) regression to estimate the INB and associated measures of uncertainty. 
This has the disadvantage of using a single set of covariates to adjust for baseline 
differences. Instead, the mean cost and effectiveness differences can be estimated 
separately using a system of seemingly unrelated regression equations [24]. This method 
enables different covariates to be used when estimating costs and effects. Unlike the 
methods presented in this paper both approaches assume that costs and effects are drawn 
from normal distributions. A more flexible method for adjusting for baseline differences 
is presented by Nixon and Thompson [25] whose methods consider costs and effects 
jointly while allowing for a range of different distributions (e.g. gamma or log normal). 
 
In conclusion, this paper derives recommended measures for presenting sampling 
uncertainty in CEA by using the CLT. The approach described and illustrated provides 
practical guidance for researchers to follow and can help ensure a more widespread and 
informed use of these techniques. 
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Appendix 
 
A Derivation of the covariance between the estimates of population mean cost and 
effects difference 
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The two treatment arms are still independent, even thought costs and effects within a 
treatment arm are correlated, so 
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B Derivation of confidence ellipses 

If c∆µ̂ and e∆µ̂ have a bivariate normal distribution   
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has a chi squared distribution with 2 degrees of freedom [26]. A %100α confidence area 
is contained by the ellipse formed by setting this expression to equal k, the critical value 

of a chi squared distribution corresponding to %100α . As 22
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Practically, this equation will be difficult to use as part of a computer program for 
plotting the confidence ellipses, so we reparameterise it in terms of a variable [ )πθ 2,0∈  
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Table 1 – Calculation of statistics for the case study: 

  
Treatment Group 

(Acupuncture)  
Control Group 
(Usual Care)  Difference 

  Eq     Estimate  Eq Estimate  Eq Estimate

sample size n2 136  n1 119  n1+n2 255 

Effect (QALYs)          

mean 1 µ̂ 2e  0.727  1 µ̂ 1e  0.708  3 µ̂ e∆
 0.018 

variance of mean n
e

2

2
2σ̂  

0.00010   n
e

1

2
1σ̂  

0.00011  5 σ̂ 2

e∆
 0.00021 

        

Cost (£)         

mean 1 µ̂ 2c  403  1 µ̂ 1c  217  3 µ̂ c∆
 186 

variance of mean n
c

2

2
2σ̂  

936  n
c

1

2
1σ̂  

1,985  5 σ̂ 2

c∆
 2,920 

        

cost and effect         

covariance 7, 11 σ̂ 2ce  -9.250  7, 11 σ̂ 1ce  -12.578  10 σ̂ ce∆
 -0.174 

correlation 2ˆ ceρ  -0.218  1ˆ ceρ  -0.231  13 ce∆ρ̂  -0.222 

          

      
Incremental cost-effectiveness ratio 

(£ per QALY) µ
µ
ˆ
ˆ

e

c

∆

∆  
10,088 



   

Table 2 - Case study: Incremental net benefit of Acupuncture vs Usual care 
K E(INB)

 
Var( INB) 95% CI for INB 

  
Q

Eq 15 15 17 17 
  

19
£0 -£186 £2,920 -£292 -£80 0.000

£5,000  
 
 
  
  
  
  
  
  
  

-£94 £9,888 -£289 £101 0.172
£10,000 -£2 £27,315 -£326 £322 0.496
£15,000 £91 £55,204 -£370 £551 0.650
£20,000 £183 £93,552 -£417 £782 0.725
£25,000 £275 £142,361 -£464 £1,015 0.767
£30,000 £368 £201,631 -£513 £1,248 0.793
£35,000 £460 £271,361 -£561 £1,481 0.811
£40,000 £552 £351,551 -£610 £1,714 0.824
£45,000 £644 £442,202 -£659 £1,948 0.834
£50,000 £737 £543,313 -£708 £2,181 0.841
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Table 3 Case study: Confidence ellipses for Acupuncture vs Usual care* 
 
     95% 75% 50%

Radians  
Incremental 

Effect 
Incremental 

Cost 
Incremental 

Effect 
Incremental 

Cost 
Incremental 

Effect 
Incremental 

Cost 
   e∆  c∆  e∆  e∆  e∆  e∆  
0  0.041 £269 0.033 £242 0.029 £226

0.2 π  0.053 £192 0.042 £190 
 
 
 
 
 
 
 
 
 

0.035 £189
0.4 π  0.052 £113 0.041 £137 0.034 £151
0.6 π  0.038 £62 0.032 £102 0.028 £127
0.8 π  0.017 £59 0.017 £99 0.018 £125
1.0 π  -0.004 £104 0.003 £130 0.008 £147
1.2 π  -0.016 £180 -0.005 £182 0.002 £183
1.4 π  -0.015 £259 -0.004 £236 0.003 £221
1.6 π  -0.001 £310 0.005 £270 0.009 £246
1.8 π  0.020 £314 0.020 £273 0.019 £248
2.0 π   0.041 £269 0.033 £242 0.029 £226

* See equation 20 

 15



   

Figure 1 - Case Study: CEAC for Acupuncture vs Usual Care
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Figure 2 - Case study: Confidence ellipses for Acupuncture vs 
Usual care
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