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Representing words as numerical vectors based on the contexts in which they appear has become the de facto method
of analyzing text with machine learning. In this paper, we provide a guide for training these representations on
clinical text data, using a survey of relevant research. Specifically, we discuss different types of word representations,
clinical text corpora, available pre-trained clinical word vector embeddings, intrinsic and extrinsic evaluation, ap-

plications, and limitations of these approaches. This work can be used as a blueprint for clinicians and healthcare
workers who may want to incorporate clinical text features in their own models and applications.

1. Introduction

With the increasing adoption of electronic health records (EHRs) in
clinical settings, jurisdictions and organizations involved in the provision
of healthcare are amassing large volumes of data on the patients they
serve. Many EHR implementations permit healthcare providers to record
free-text clinical notes on their patients. These notes are rich in clinical
and demographic information, describing: current problems, past med-
ical history, family history, treatment and immunization history, referrals
or consults, as well as overall progress towards health goals. It is be-
coming increasingly common for healthcare organizations to adopt
methods from machine learning (ML) and artificial intelligence (AI) to
leverage clinical text data for task automation, clinical predictive mod-
elling, as well as knowledge discovery and understanding. Relevant in-
formation can be gleaned from free-text clinical notes. However, free-text
clinical notes are unstructured, riddled with spelling errors, and consist
of a language very specific to the medical domain [1]. Converting the
free-text in clinical notes into a representation that can easily be used by
ML remains one of the top challenges in healthcare.

In this paper, we discuss a popular method for representing the
semantics of text data — word embeddings — and focus on how this
method can be meaningfully applied to represent clinical text data.
Specifically, we describe model training methods (including details on
the data required to learn these representations), evaluation

procedures, and applications to clinical data.

A word embedding is a real-valued vector that represents a single
word based on the context in which it appears. This numerical word
representation allows us to map each word in a vocabulary to a point in
a vector space, as exemplified by Fig. 1. The ‘distributional hypothesis’
states that words that occur in the same contexts have similar or related
meanings [2]. Thus, we expect that the embeddings for semantically or
syntactically related words will be closer to each other than to un-
related words in vector space. This relatedness is entirely dependent on
the text data, or corpus, from which these embeddings are derived.

Historically, feature engineering in natural language processing
(NLP) involved creating specific numerical functions to represent
salient aspects of the text, such as the ratio of nouns to pronouns. This
approach often required significant domain knowledge and effort to
identify meaningful features. By contrast, word embeddings can be
learned directly from a corpus of text and do not require any manual
labeling or feature extraction/engineering, i.e., they can be learned in
an unsupervised manner. As such, word embeddings can be easily
learned on any corpus of text data (including clinical text from EHRs).

A basic recipe for training, evaluating, and applying word embed-
dings is presented in Fig. 2. Section 2 describes different word em-
bedding types, with a particular focus on representations commonly
used in healthcare text data. We give examples of corpora typically used
to train word embeddings in the clinical context, and describe pre-
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"... doctors work for long hours ..."

Fig. 1. Visual example of word embeddings. Each word in a sentence gets
mapped to a word embedding. For simplicity, we only show the embeddings as
points in 2-D space.

processing techniques required to obtain representative word embed-
dings in Section 3. We then focus on practical aspects of training these
word embeddings in Section 4, and discuss model fitting and hyper-
parameter tuning. We devote Section 5 to the evaluation of word em-
beddings, including both intrinsic and extrinsic methods. Finally, Section
6 addresses various limitations of word embeddings, such as bias, in-
terpretability, and privacy.

2. Representing text with embeddings

In this section, we briefly describe different types of word embed-
dings, summarized in Table 1 (with additional details provided in the
Appendix). Throughout this section, we refer to a sequence of n words
in a given text as an ‘n-gram’.

2.1. Word embedding representations

There are many different methods for learning word embeddings
from a corpus, often beginning with a one-hot encoding, which maps each
word in a vocabulary, consisting of V unique elements, to a unique index
in a vector. A word is therefore represented by a vector of all zeroes
except for a 1 in the appropriate position. By learning context-based
prediction, word embedding methods map each of these one-hot vectors
to dense representations, whose dimensionality is typically much lower
than the size of the vocabulary, and whose elements capture the latent
semantics of the language data. The rationale is that better word pre-
diction is possible by learning better dense representations of words.

2.1.1. Word2vec

Word2vec is a prediction-based method that can be implemented in
two ways: as a continuous bag-of-words (CBOW) and as a skip-gram (SG)
[3-5]. Both the CBOW and SG models use small neural networks to learn
the mapping of words to a point in a vector space, as detailed in [6]. The
difference between these methods is in whether the neural network at-
tempts to predict a focus word given its context (CBOW) or the reverse.
Two key parameters for training word2vec embeddings are 1) the
number of the embedding dimensions (typically between 50 and 500,
tuned experimentally), and 2) the length of the context window (i.e.,
how many words before and after the target word should be used as
context for training the word embeddings, usually 5 or 10 words). Other
meaningful hyper-parameters are discussed in the Appendix. While
training embeddings with more dimensions typically requires more
training data, each dimension should capture some aspect of meaning, so
the embeddings need to be large enough to differentiate words.
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Doc2vec and paragraph2vec [7] are variants of word2vec in which
vectors represent documents or paragraphs instead of words, respec-
tively. Doc2vec can further be differentiated into two types — the
paragraph vector-distributed memory (PV-DM) model (analogous to
word2vec’s SG model) and the paragraph vector-distributed bag of
words (PV-DBOW) (similar to CBOW).

2.1.2. Global Vectors (GloVe)

The GloVe model also learns word embeddings, but from a term co-
occurrence matrix instead of a word prediction task [8]. A co-occur-
rence matrix is a V X V matrix where V is the vocabulary size. Each
entry of the matrix corresponds to the number of times the indicated
vocabulary items occur together within a pre-specified context window,
which moves across the entire corpus. GloVe learns vector embeddings
so as to minimize the reconstruction error between co-occurrence sta-
tistics predicted by the model and global co-occurrence statistics ob-
served in the training corpus. The model consists of numerous hyper-
parameters that must be judiciously chosen, including the vector em-
bedding dimension and the context window size.

Word vectors estimated using GloVe are conceptually similar to those
derived from word2vec but uses an underlying count-based model, rather
than word2vec’s prediction-based model. Because GloVe typically com-
putes statistics over larger context windows than word2vec, it permits
capturing longer-term dependencies, although the order of those de-
pendencies will be lost. Empirically, no clear advantage has emerged for
either word2vec or GloVe, as the overall performance depends on various
factors, including: the type of data and evaluation task being considered.

2.1.3. FastText

The FastText model builds on a specific limitation of methods such
as word2vec and GloVe. Specifically, it can handle new, out-of-voca-
bulary (OOV) terms by extending the word2vec skip-gram (SG) model
with internal sub-word information [9], in the form of character n-
grams (i.e., sequences of adjacent characters). The method builds a
vector representation for a word based on the composition of these
subword components, which allows the model to represent the mor-
phology and lexical similarity of words, in addition to being able to
construct vectors for unseen words.

Probabilistic FastText [10] combines Gaussian mixture models
(GMMs) and FastText. Each word is represented as a GMM of K com-
ponents, representing K different senses of a word. This representation
is able to capture the sub-word structure, different word senses, and can
provide better representation of rare or unseen words [10].

2.1.4. Embedding from Language Models (ELMo)

ELMo [11] is a contextualized word- and character-level embedding.
Instead of using a fixed embedding for each word, ELMo looks at the
entire sentence as it assigns each word an embedding. It uses a bi-di-
rectional recurrent neural network (RNN) trained on a specific task to
create the embeddings. Since it uses a bidirectional architecture, the
embedding is based on both the next and previous words in the sentence.

A key innovation of ELMo is that the embedding one obtains is
weighted by a coefficient for the task, so that the same architecture may
be trained on one task (e.g., movie reviews from social media) and then
adapted on a very different task (e.g., diagnostic code prediction from
EMRs), and combine information that is shared while also focusing on
more specific semantics.

2.1.5. Bidirectional Encoder Representations from Transformers (BERT)
BERT [12] is another contextualized word representation model
based on a multilayer bi-directional transformer-encoder, where the
transformer neural network uses parallel attention layers rather than
sequential recurrence [13]. BERT is pre-trained on two unsupervised
tasks: (1) a ‘masked language model, where 15% of the tokens are
randomly masked (i.e., replaced with the “[MASK]” token), and the
model is trained to predict the masked tokens, (2) a ‘next sentence
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prediction’ (NSP) task, where the model is given a pair of sentences and
is trained to identify when the second one follows the first. This second
task is meant to capture more long-term or pragmatic information.

BERT is trained on the BooksCorpus dataset (800 M words) [14] and
text passages of English Wikipedia. Two pre-trained model sizes for
BERT are available: BERT-Base and BERT-Large. BERT can be used
directly from the pre-trained model on un-annotated data, or fine-tuned
on one’s task-specific data. The pre-trained publicly available model
and code for fine-tuning are available online’*. Many domain-specific
versions of BERT are available, which are trained or fine-tuned on in-
domain text, including the following:

e BioBERT [15] is initialized with the general BERT model and pre-

trained on PubMed abstracts and PMC full-text articles. It is further

fine-tuned for biomedical text mining tasks such as named entity

recognition (NER), question answering, and relation extraction. The

pre-trained BioBERT model® and code” are publicly available.

ClinicalBERT [16,17] is trained on clinical text from approximately

2M notes in the MIMIC-III database [18], a publicly available da-

taset of clinical notes. More specifically, the following versions are

presented by Alsentzer et al.[16]:

1. Clinical BERT: Initialized from BERT-Base, uses text from all note
types.

2. Clinical BioBERT: Initialized from BioBERT, uses text from all
note types.

3. Discharge Summary BERT: Initialized from BERT-Base, uses only
discharge summaries.

4. Discharge Summary BioBERT: Initialized from BioBERT, uses only
discharge summaries.
The code and pretrained models are available®.
Huang et al.[17] also developed ClinicalBERT. ClinicalBERT uses
the same pre-training tasks as the original BERT (i.e., masked
token prediction and next sentence prediction). ClinicalBERT is
pre-trained on a random sample of 100,000 notes from MIMIC-III
[18] using the same parameter setting as the BERT-Base model.
After pre-training, the model is fine-tuned on a task specific to
clinical data. Code for training this version of ClinicalBERT is
publicly available® as well as model parameter checkpoints’.

SciBERT [19] is trained on a random sample of 1.14 M full-text

papers from Semantic Scholar [20] (18% computer science papers,

82% biomedical papers). There are four versions of SciBERT (code

and pretrained models are publicly available®):

1. Cased (vocabulary contains both uppercase and lowercase).

2. Uncased (vocabulary converted to lowercase).

3. Models using BaseVocab (original vocabulary released with
BERT-Base) fine-tuned on BERT-Base models.

4. Models using SciVocab (scientific vocabulary built using
SentencePiece’ on their scientific corpus), trained from scratch.

2.2. Other text embedding representations

Most word embeddings are represented in the Euclidean space, which
sometimes makes them unable to capture hierarchical structure observed
in certain corpora (or they may require high dimensional embedding
dimensions in order to capture this complexity). Poincaré embeddings [21]
avoid this problem by representing the data in the hyperbolic space (or

! https://github.com/google-research/bert.

2 https://github.com/huggingface/pytorch-transformers.
3 https://github.com/naver/biobert-pretrained.

* https://github.com/dmis-lab/biobert.

S https://github.com/EmilyAlsentzer/clinicalBERT.

8 https://github.com/kexinhuang12345/clinical BERT.

7 http://bit.ly/clinicalbert_weights.

8 https://github.com/allenai/scibert.

® https://github.com/google/sentencepiece.
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more precisely, on a Poincaré ball). Unlike Euclidean space, hyperbolic
space has a constant negative curvature and the ability of preserving the
hierarchical/tree-like structure between points, which helps to capture
the hierarchy and similarity of terms more accurately.

The main advantage of these embeddings is that they are purported
to capture hierarchical information in far fewer dimensions than typical
word embedding methods (see the Appendix for more details).

Word2vec, GloVe, and FastText learn models of language through
windows of context, but this does not permit for long-term dependencies
to be learned. For example, if a treatment plan at the end of a long
paragraph is related to symptoms mentioned at the beginning, those
methods may not be able to capture it. Secondly, often ambiguous words
can only be disambiguated by using information much later in the text.
These two insights led to a relatively state-of-the-art methodology, called
embeddings from language models (ELMo) [11]. This approach employs a
type of neural network, called a recurrent neural network (RNN) in which
information is retained from one word to the next within the latent space
of the embedding (see Fig. 3b). This latent space therefore encapsulates
both information about the current word, but also to some extent all
words that preceded it. In fact, ELMo uses a bi-directional RNN that
encapsulates all preceding information as well as all information that is
to follow, when learning the meaning of a given word (see Fig. 3c). This
results in a representation that is highly contextual.

Some other embedding methods using a similar recurrent approach
have been developed, including Universal Language Model Fine-Tuning
(ULMFiT) [22], Generative Pre-Training (GPT) [23], Generative Pre-Training
2 (GPT2) [24], XLNet [25], Cross-linguage Language Model (XLM) [26],
and Enhanced Language Representation with Informative Entities (ERNIE)
[27] but have not yet been used extensively in the medical domain.

2.3. Embedding visualization

Modern word embedding methods typically represent words in re-
latively high-dimensional spaces. To facilitate interpretation, it is often
desirable to project these onto 2D or 3D surfaces for visualization.

A common method for embedding words into low dimensional spaces
is t-distributed stochastic neighbor embedding (t-SNE) [28]. Visualiza-
tions can help illustrate the validity of learned embeddings; in particular,
one expects to see semantically similar words cluster in these low-di-
mensional spaces (see Table 2). Fig. 5 shows a word embedding visuali-
zation using t-SNE on a model trained on the PubMed dataset'’. Here, we
can see that medical specialties are generally clustered together, as are
body parts and the names of diseases; this is also demonstrated in Table 8.

3. Data and pre-processing

Learning word embeddings from clinical text requires data pre-
paration, model fitting, and model evaluation.

3.1. Corpora

Embeddings have been generated from several varieties of clinical
text corpora, as summarized in Table 3. Here, we present comparisons
of learned embeddings across different corpora.

The utility of embeddings is heavily reliant on the task at hand. Wang
et al. [29] compared embeddings generated from clinical notes, PubMed
Central (PMC) (a repository of biomedical publications), Google News,
and Wikipedia + Combined'' (English newswire text data from a variety
of tasks). They found that embeddings generated from clinical notes are
more strongly correlated with human judgments of word similarity.
These embeddings are also more useful in predicting fractures than
embeddings trained on the other corpora. However, in other tasks such

19 https://www.ncbi.nlm.nih.gov/pubmed,/.
1 https://catalog.ldc.upenn.edu/LDC2011T07.
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as smoking prediction, drug interaction extraction, and other information
retrieval tasks, the differences due to corpora are not as significant.
Publicly-available pre-trained word embeddings may suffice for
certain tasks, but typically training on text specific to the target domain
leads to improved performance [41]. Publicly-available pre-trained
clinical word embeddings'? have been trained on PubMed abstracts'?,
PMC full-text documents'>, PubMed abstracts and PMC full-text docu-
ments'®, and a combination of PubMed and PMC texts'? along with
texts extracted from Wikipedia'*. MIMIC-III is a relatively large, freely
available, relatively de-identified critical care dataset from approxi-
mately 40,000 patients. MIMIC-III contains free-text notes, laboratory
tests, vital signs, and ICD-9 codes [18]. Additionally, the i2b2 (Infor-
matics for Integrating Biology and the Bedside) center provides dis-
charge summaries and clinical notes'®. Although these datasets are
smaller than general-purpose corpora, they include gold-standard an-
notations and have been used for shared tasks in biomedical NLP.

3.2. Pre-processing for word embeddings

Pre-processing a text prepares it for further processing. Typical steps
include tokenization, removing stop words (e.g., the, is, a) and lem-
matization (i.e., reducing different morphological forms of a word into
a root form, e.g., both running and runner are lemmatized to run).
Table 4 shows an example of a pre-processed sentence.

Care must be taken in pre-processing the clinical text. In particular,
there is an increased risk that pre-processing medical acronyms may
lead to ambiguity (e.g., the medical condition ADD (attention deficit
disorder) may be converted to the verb add by pre-processing, if a
blanket standardization to lowercase is applied).

4. Training word embeddings for clinical data

In this section, we discuss the process of training word embeddings
and how different researchers have trained their own word embeddings
on clinical text datasets.

4.1. Training

Training word embeddings involves fitting a model to a pre-pro-
cessed corpus, and tuning the model’s hyper-parameters, which are set-
tings whose values are specified empirically before training. For ex-
ample, the number of layers in a neural network is a hyper-parameter,
whereas the weights between artificial neurons are parameters that are
adjusted during the training phase.

Often, performance increases with the size of the dataset, up to a
certain point. In experiments with medical data from PubMed abstracts,
Zhu et al. [42] found that performance gains decrease after 4 million
distinct words of training data. By contrast, Zhao et al. [43] found that
training on a smaller, in-domain medical dataset provided better per-
formance than training on a large, general domain dataset (Google
News), based on the results of relatedness assessment, neighbourhood
coherence, outlier detection, and drug name recognition. In a similar
experiment, Wang et al. [29] showed that word embeddings trained on
biomedical corpora (EMR data from the Mayo Clinic and MedLit articles
from PubMed Central'®) captured the semantics of medical terms better
than those trained on general domain corpora (i.e., GloVe and Google
News), but may not have better results for downstream biomedical NLP
tasks such as biomedical information retrieval.

2 http://bio.nlplab.org/.

13 https://www.ncbi.nlm.nih.gov/pubmed,/.

4 https://en.wikipedia.org/wiki/Wikipedia:Database_download.
15 https://www.i2b2.0org/NLP/DataSets/Main.php.

18 https://www.ncbi.nlm.nih.gov/pmc/.
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4.2. Existing clinical word embeddings

Many researchers train their own word embeddings on the clinical
data available to them. However, there are also many large, freely
available datasets that can be used for training word embeddings alone,
or in combination with task-specific data in fairly arbitrary ways.

Dubois et al. [32] trained GloVe embeddings using 27 million
anonymized notes obtained from 1.2 million patients and 49 million
visits. When pre-processing the medical notes, they treated negative
counterparts of words as a single word; e.g., fever and no fever, since
negations are important in a patient’s medical evaluations [44,45].
They also trained embeddings on journal abstracts (MCEMJ) from
OHSUMED'’. Huang et al. [46] trained word embeddings on MedHelp
online forums (informal medical discussions), PubMed text (academic
papers), and Wikipedia (general-purpose text), while De Vine et al. [30]
trained word embeddings on concatenations of i2b2’s training set [47],
MedTrack [48], and CLEF’s (Conference and Labs of the Evaluation
Forum) 2013 data sets.

4.3. Embeddings for clinical concepts

Because word embeddings represent the meaning of a word based
on the context in which it appears, they do not necessarily capture
clinical knowledge. However, embeddings can be augmented to re-
present more than words — they can represent clinical concepts such as
UMLS terms or ICD-10 codes. In order to improve the embedding re-
presentation, clinical concepts can be integrated into the model using
several methods.

Starting with word embeddings, clinical knowledge can be used to
refine the representations. This information can be injected at the
training stage; for example, Boag et al. [49] injected domain knowledge
into word embeddings trained on the MIMIC-III corpus [18] by adding
UMLS features to the embedding training. Using an extension of
word2vec that allows training on arbitrary contexts, Levy et al. [50]
trained a model using a context representation that included both the
surrounding words and the identifiers of UMLS terms that match that
word in the UMLS database. This trained vector model is called Aug-
menting Word Embeddings with a Clinical Metathesaurus (AWE-CM)'®.
Although these embeddings had higher correlations with physician si-
milarity judgments (.508 vs .495) on MiniMaySRS-doctors (see Section
5.1.1) [51], the default word2vec embeddings trained on MIMIC-III had
higher correlation with medical coders (MiniMaySRS-coders and
MayoSRS).

Similarly, Patel et al. [35] created embeddings for words and ICD-10
codes for automated medical coding review. They learned embeddings for
the codes by treating the code as the target word and the terms in each
document as the context. The adapted embeddings gave a 1% improvement
of F; scores on an automated coding review task, where the model predicts
whether the medical billing code should be accepted or sent for re-coding.

If word embeddings have already been trained, they can be adapted
to the clinical domain using a technique called ‘retrofitting’, which
adjusts the values of embeddings to better align with an external re-
ference. Yu et al. [52] retrofitted word embeddings of clinical concepts
from the Medical Subject Headings (MeSH) taxonomy using Faruqui
et al.’s approach [53]"°. This retrofitting function essentially minimizes
the distance between the original embedding and the retrofitted em-
bedding for each word, while also minimizing the distance between
embeddings of words that are similar in the MeSH hierarchy or ac-
cording to the UMLS-similarity tool [54].

Zhao et al. [43] trained word embeddings (using word2vec skip-
gram) for drug name entities from data extracted from PubMed and

17 http://davis.wpi.edu/xmdv/datasets/ohsumed.
18 https://github.com/wboag/awecm.
!9 https://github.com/mfaruqui/retrofitting.
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DrugBank *°, and tuned them according to correlation with word fre-
quency vectors. The code and embeddings are available*'.

Embeddings can also be learned directly for medical terms. Choi
et al. [55] trained embeddings for clinical concepts from UMLS, as well
as ICD-9 codes. They used the OHSUMED dataset, as well as a private
dataset of medical claims. The medical claims consisted of temporal
data such as diagnosis and procedure codes, so in order the adapt the
data to make it resemble text, they treated each 1/3 of a year as a
pseudo-sentence, and randomly ordered the concepts within each seg-
ment. A bi-linear skip-gram embedding model was then trained using
word2vec. The embeddings for UMLS identifiers and ICD-9 codes are
also available®?,

Using a co-occurrence matrix of UMLS identifiers in clinical notes,
the cui2vec model from Beam et al. [56] trained GloVe and word2vec
embeddings [57]. The authors also developed a set of benchmarks to
measure embedding similarity for co-morbidity relationships, causative
relationships, drug-condition relationships, UMLS semantic types, and
human similarity judgments from UMNSRS. Compared to the embed-
dings from Choi et al. [55], cui2vec performed better on almost all
benchmarks. The embeddings are available®*,

However, these methods only looked at relationships between
clinical concepts. In practice, we may want to consider the context in
which those concepts appear (i.e., the rest of the words in the docu-
ment); for example, we may need to handle negation and modality
aspects (e.g., actual, hypothetical, conditional).

In order to use contextual information, Mencia et al. [58] used the
all-in-text method [59], which creates label embeddings that are close
in vector space to the embeddings of documents that have those labels.
This is similar to the method from Patel et al. [35], described above, but
here embeddings are trained from scratch. The authors jointly learned
embeddings of words and documents, and manually assigned labels by
minimizing the ranking loss over the similarity between document
embeddings and their associated label embeddings (positive vs. nega-
tive). The learned embeddings showed higher correlation with the
UMNSRS datasets [60] (see Section 5.1.1) than other pre-trained
medical embeddings such as the PubMed vectors. The data are available
online®*,

Zhu et al. [61] presented a framework for clinical concept extraction
using contextual word embeddings. They trained ELMo word embed-
dings on SNOMED CT [62], in addition to discharge summaries and
radiology reports from the MIMIC-III dataset [18].

These works consistently showed that training embeddings on
medical text produced better downstream performance than training on
larger, more general corpora such as Google News [58,43]. See Table 5
for a summary of available embeddings for clinical concepts.

4.4. Transforming target data to word embeddings

Once the word embeddings have been trained on the training data,
they can readily be used to convert any target data to the word em-
beddings format. More specifically, it is not required to train word
embeddings for the data of your choice each time, rather words from
the target data can be mapped to word vectors using the trained word
embeddings, replacing the OOV words with zeros (if not automatically
handled by the word embedding algorithm). Then target data word
embeddings can be used for an extrinsic evaluation (discussed in the
next section) and/or a target task.

20 https://www.drugbank.ca/releases/latest.

21 https://github.com/chop-dbhi/drug_word_embeddings.
22 https://github.com/clinicalml/embeddings.

23 http://cui2vec.dbmi.hms.harvard.edu/.

24 http://www.ke.tu-darmstadt.de/resources/medsim.
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5. Evaluating clinical word embeddings
5.1. Intrinsic evaluation

From a linguistic perspective, trained word embeddings can be used
to learn about semantic or syntactic relationships between words in a
corpus. That is, the intrinsic statistics of a language within a corpus can
be used to gain an understanding of the domain language itself.

5.1.1. Intrinsic evaluation methods

For general word embeddings, a typical intrinsic evaluation is to cal-
culate similarity or relatedness scores to human judgments, using datasets
such as SimLex-999 [63], WordSim353 [64], and MEN [65]. SimLex-999
contains similarity scores for 999 pairs of words generated from a human
free-association test, WordSim353 contains relatedness judgments for 353
pairs of words in the general domain, and MEN contains relatedness
judgements for 3000 word pairs from Wikipedia and the web.

However, good performance on these tests often does not correspond
to good performance on downstream tasks such as classification[66].
This could be partially because many word similarity evaluation sets fail
to distinguish between similarity and relatedness. For example, in med-
ical text, fever and cough might be highly related, but they are distinct
symptoms, and thus should be treated differently by the model. To ad-
dress this issue, some evaluation datasets have separate subsets for
testing similarity and relatedness, but others which are meant to test for
‘similarity’ actually conflate both similarity and relatedness into one
concept, without distinguishing between the two. This is a problem that
is present in both the WordSim353 and MEN datasets, while SimLex
specifically measures similarity and not relatedness.

Another method of evaluation is by learning an alignment between the
word embeddings and manually-constructed feature vectors with linguis-
tics properties [67]. These linguistic vectors can be created from SemCor
[68], a corpus of word lemmas annotated with coarse semantic categories
from WordNet [69]. The alignment score is the sum of the correlations of
aligned dimensions of the word embeddings and corresponding linguistic
vectors. The subspace alignment scores show higher Pearson correlation
(r = 0.87) with extrinsic evaluation scores such as Senti [70] (a treebank
dataset for sentiment classification) than SimLex (r = 0.51) and WS-353
(r = 0.46). The evaluation code is available®.

These standard measures do not necessarily test for the kind of se-
mantic similarity that is important for medical data, described below. In
order to evaluate embeddings for medical text, several domain-specific
evaluation methods have been developed.

The UMNSRS similarity and relatedness datasets [60] contain pairs of
clinical concepts from the Unified Medical Language System (UMLS) that
were manually rated by medical experts. The similarity set contains 566
pairs of concepts and the relatedness set contains 588 pairs. These can be
used as a reference to see if the cosine similarity scores of each pair
according to a word embedding model are close to human judgments.

Similarly, the MayoSRS dataset [51] contains 101 clinical term pairs
with relatedness scores from 3 physicians and 9 medical coders. With
regards to the difference between similarity and relatedness judgments,
the UMNRSRS dataset may be preferable because it explicitly encodes
this distinction.

Choi et al. [55] introduced a Medical Conceptual Similarity Measure
(MCSM) for UMLS concepts based on discounted cumulative gain
(DCG), which a measure typically used for scoring information retrieval
results. The function measures the similarity of a set of types by looking
at the k nearest neighbors of each concept to see if they have the same
type. They also introduced a similar Medical Relatedness Measure
(MRM) based on the ICD-9 hierarchical groupings and relations be-
tween different types of clinical terms, which is defined in the appendix.

25 https://github.com/ytsvetko/qvec.
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Fig. 2. How to train word embeddings on clinical data and use them for a machine learning task. If using a BERT or ELMo model, the transformation to word
embeddings and target task (e.g., classification) are typically combined into a single step.

5.1.2. Intrinsic evaluation of word embeddings for clinical text

Chiu et al. [72] evaluated their word embeddings in both intrinsic
(UMNSRS-Rel and UMNSRS-Sim) and extrinsic evaluation tasks (named
entity recognition (NER) on BioCreative II Gene Mention task corpus
(BC2) [73] and the JNLPBA corpus (PBA) [74]). They experimented with
using the original text, a lower-cased version of the text, and by shuffling
the sentences. They found contradicting results in intrinsic and extrinsic
evaluation tasks. For example, increasing the context window parameter
showed significant increases in the intrinsic evaluation, but a decrease in
extrinsic measures. They also found that training on a larger corpus did
not necessarily guarantee better word embeddings.

Wang et al. [29] evaluated word embeddings from four different
sources: 1) 100-dimensional word vectors trained from the Mayo Clinic
clinical notes, 2) 60-dimensional word vectors trained on the PubMed
Central biomedical publications [41], 3) pre-trained publicly-available 100-
dimensional from Wikipedia GloVe, and 4) standard 300-dimensional word
vectors from Google News. They first performed a qualitative analysis by
looking at the five most similar words to a given set of medical words, and
found that word embeddings trained from Mayo Clinic notes and PMC
biomedical publications captured medical words better than GloVe and
Google News. Intrinsic evaluation consisted of evaluating the semantic si-
milarities of medical terms on four biomedical measurement datasets: (1)

Pedersen [51], (2) Hliaoutakis [75], (3) MayoSRS [76], and (4) UMNSRS
[56,58]. Similarity was categorized as practically synonymous, related,
marginally related, and unrelated. FastText computed word vectors for out-
of-vocabulary words. Intrinsic evaluation revealed that similarity scores
based on word embeddings trained on clinical notes were closer to simi-
larity scores provided by humans, by calculating correlation coefficients.
Huang et al. [46] defined an elementary vector representations (EVR) as
an n-dimensional binary vector v, where v,,[i] = 1 if word w and the word
at the i'" position occur within a context window (of length 5) in the text,
vy [i] = 0 elsewhere. They compared EVRs and word embeddings trained
on MedHelp online forums, PubMed text (academic papers), and Wikipedia.
To analyze these word embeddings, they considered medical terms
from two sources: UMLS and Ranker’® (an online social platform to
perform polls on aspects such as entertainment, brands, sports and cul-
ture). The authors compared word embedding techniques, clustered
medical terms, clustered medical relations, and predicted semantic
classes of medical terms (e.g., ‘disease’, ‘symptom’, ‘treatment’). Com-
paring word embeddings and elementary vector representations (EVRs)
showed that word embeddings produced better clusters of medical terms

26 https://www.ranker.com/.
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Table 1

Comparison of word embeddings model characteristics, where V is vocabulary
size, and D is an arbitrary positive number. V is typically 1000 or 10, 000, while
D usually varies from 50 to 500.

Model Freq. Prediction = Handles  Sub-word  Order of
based based ooV info dim.
One-hot Encoding v
Co-Occurrence Matrix v V2
CBOW v D
Skip-gram v D
Glove v D
FastText v v v D
Poincaré Embedding v <10
ELMo v v v D
Probabilistic FastText v v v D
BERT v v v D

based on two metrics for cluster quality — the Davies-Bouldin Index
(DBI), which measures intra-cluster distance vs. inter-cluster distance
(higher values indicating better clusters) and the Dunn Index (DI), which
estimates the optimum number of clusters based on their diameters and
dissimilarity with other clusters. To analyze the results of medical term
clustering, they compared the three types of word embeddings and found
that the PubMed embeddings (followed by MedHelp) proved to provide
the best representations for professional-oriented terms from UMLS,
while for the consumer-oriented terms from Ranker, the performance of
both the PubMed and MedHelp word embeddings are significantly better
than using Wikipedia word embeddings.

To confirm that the word embeddings preserve medical relation-
ships such as (disease, treatment) or (disease, symptom), the authors
compared the word embeddings of the pairs, obtained from Ranker, to
the word embeddings of the difference of the individual term, i.e.
V{a, by 2 V(b) — V{a) .

Both PubMed and Medhelp embeddings show a clear separation of
disease symptoms and treatment terms, while the Wikipedia embeddings
fail to separate these classes. The authors also evaluated the embeddings
for medical class prediction by calculating the centroids of the semantic
clusters, and then predicting the semantic class of a query term based on
the nearest centroid. This experiment also showed that the PubMed and
MedHelp embeddings produce better results on the medical class pre-
diction task (with accuracy scores at least 10% higher than with the
Wikipedia embeddings), and that the results from the MedHelp word
embeddings are comparable to the PubMed word embeddings.

De Vine et al. [30] used word embeddings for clinical information
extraction. They used baseline features including orthographic, lexical,
morphological, contextual, and external resource features (such as

Output layer

Hidden layer

Input layer
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terms from SNOMED CT). They compared these to ‘unsupervised’ fea-
tures including word embedding features (i.e., word2vec) and sequence
features, which are constructed by concatenating normalized word
vectors with normalized lexical vectors (vectors of n-grams and skip-
grams). Each concatenated vector is normalized once again to obtain
the sequence vector. De Vine et al. used K-means + + [77] to cluster the
training data, and vectors in the test data were projected to the nearest
cluster and assigned a cluster ID to be used as feature value. The
baseline and unsupervised features are tested with conditional random
fields (CRFs) on two clinical corpora: (i) concatenation of i2b2 train set
[47], MedTrack [48], CLEF 2013 train and test sets, and (ii) i2b2 train
set only and two non-clinical corpora — PubMed (from 2012) and Wi-
kipedia (from 2009) [78]). Results based on word embedding features
are comparable to baseline features. Also, adding word embedding
features to the baseline features produced statistically significant im-
provements (p < 0.05) for F; however, the sequence features only
showed a small improvement in the results. Through empirical eva-
luation, the authors also find that having more data is more effective
than having better formatted data in the clinical domain. Moreover, the
content, format, and domain of the data to derive the unsupervised
features should be similar to the target corpus to get good results, and
bio-medical data can be used instead of clinical data, for extracting the
features without significant loss of information.

5.1.3. Intrinsic evaluation of clinical concept embeddings

For intrinsic evaluation of clinical concept embeddings, human si-
milarity judgements are often used, such as MayoSRS [49] or UMNSRS
[56,58]. In addition, Zhao et al.[43] found that embeddings trained on
PubMed and DrugBank showed much higher correlation with human
judgments in the UMNSRS datasets. They also performed coherence
assessment and outlier detection, which showed that drug names were
semantically close to other drug entities.

Yu et al.compared their results to human similarity judgments on
MeSH terms from Nguyen et al. [79]. They also introduced a metric to
determine the degree of semantic similarity between pairs of concepts.
For evaluation, they calculated the similarity scores between 25 pairs of
MeSH terms from the original word embeddings and the retrofitted
embeddings, and found that the retrofitted embeddings trained on the
UMLS-Similarity tool achieved the highest correlation with physician
similarity judgments in terms of Spearman’s rank correlation coefficient.

Choi et al.computed medical similarity and relatedness of nearest
neighbors, and found that the concept embeddings from clinical notes
(MCECN) best preserved the neighbourhood structure in terms of
medical relatedness, and embeddings from OHSUMED performed the
best in terms of medical similarity.

Huang et al.[17] tested their ClinicalBERT model on masked lan-
guage modeling and observed a 30% improvement, and on next

W41

W

Fig. 3. (a) NN, (b) RNN, (c) ELMo. Three forms of neural network language model, each of which take input word wy at time t (dark grey layer) and try to predict the
next word (i.e., output w41, the black layer) by learning some intermediate representation (i.e., the hidden layer (white), h,). Figure (a) shows two equivalent
representations of traditional, feed-forward neural networks; Figure (b) shows a recurrent neural network in which the hidden (latent) information is remembered
forward over time; and Figure (c) shows the ELMo language model in which information is remembered forward and backwards in time to disambiguate words

(where the backwards embedding is shown in hashed layers, h/).
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Fig. 3. (continued)

sentence prediction with a 19% improvement in accuracy over the
original BERT results. They also evaluated that representation using a
clinical concept dataset [51] (consisting of clinical term pairs with re-
latedness scores from physicians) and report Pearson correlation be-
tween (1) physician ratings of the clinical concept similarity from [51],
and (2) cosine similarities between model embeddings (i.e., fastText
(r = 0.487), word2vec (r = 0.553) and ClinicalBERT (r = 0.670)), where
word2vec and fastText are trained on MIMIC-III for a fair comparison.

A qualitative analysis of the embeddings from the Alsentzer et al.
[16] ClinicalBERT model also showed that it has greater cohesion
around medical or clinic-operations terminology than BioBert.

5.2. Extrinsic evaluation — applications

In the previous section, we presented some intrinsic tests that can be
used to evaluate the quality of created word embeddings, often in terms of
correlations with human ratings of word similarity. However, as extensively
documented, performance on intrinsic tests does not always correlate with
performance on intended applications (i.e., so-called “extrinsic tasks”).

Chiu et al. [66] investigated relationships between intrinsic and
extrinsic evaluations of word embeddings on ten benchmark datasets by
ranking word pairs based on the cosine similarity of the two words.
They then compared the rankings to human rankings by calculating
Spearman’s rank correlation. For extrinsic evaluation, they used three
standard sequence labeling tasks — part-of-speech tagging, chunking,
and named entity recognition. The results demonstrated little to no
correlation between intrinsic and extrinsic evaluation. While good
scores on intrinsic evaluation tasks may demonstrate that the embed-
dings are capturing coherent information, it may not be useful for
downstream tasks. So, while intrinsic evaluation can provide a good
‘sanity check’ of the embedding model, the performance on the final
task is ultimately more important, and embedding models should be
tuned accordingly.

Wes1

S
{ h

We42
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In the clinical setting, extrinsic evaluation of word embeddings in-
volves particular applications or tasks for which were are created. For
example, if the goal is to predict bone fractures using doctor notes,
analyzing the accuracy of such a system would be an extrinsic task. While
specific tasks exist, there is no common data set that can be applied
generally. Therefore, in this section, we cover various applications for
which word embeddings have been used in order to clarify how word
embeddings can be used for task automation in the clinical setting.

Once the word embeddings have been created (Section 4), and have
been evaluated for semantic content (Section 5.1.1), they can be used to
represent text documents, such as clinical notes, and input to machine
learning classifiers for a variety of tasks. Often, each document can be
represented as a matrix, where each row corresponds to the embedding
for a word instance.

A common intermediate task is identifying clinical concepts in text.
Si et al.[80] compared traditional word embeddings (word2vec, fas-
tText, and GloVe) trained on MIMIC-III against ELMo, BERT, and Bio-
BERT for clinical concept extraction on the i2b2 2010 and 2012 data-
sets (clincal notes with annotated concepts), and clinical reports with
disease concepts from SemEval 2014 and 2015. The best results (which
became the new state-of-the-art) were obtained by starting with the
BERT-Large model, continuing training on MIMIC-III, and then adding
the fine-tuning layer (a bi-LSTM) to the model. This model achieved F;
scores between 0.80 and 0.90 on the 4 datasets, outperforming all other
embedding methods. However, there is an available ELMo model
trained on PubMed data which was not tested.

They also found that concept extraction performance decreased
after a certain number of BERT fine-tuning iterations (about 340k
steps), potentially due to the model losing information learned from the
general domain corpus and overfitting to the in-domain corpus. ELMo
remained stable after about 280 k steps.

A common end task for word embeddings generated from clinical
EMRs is predicting unplanned readmission after discharge [37-39]. Craig
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Fig. 3. (continued)
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Fig. 4. BERT model (https://lyrn.ai/2018/11/07 /explained-bert-state-of-the-art-language-model-for-nlp/). Taking masked input and outputting the masked word
.
Table 2
Top ten similar words for common terms based on PMC word embeddings.
Word Similar words
Doctor Physician, dentist, receptionist, chiropractor, midwife, pharmacist, pediatrician, clinician, practitioner, friend
Pain Discomfort, pains, fatigue, headache, backache, paresthesia, painful, dysesthesia, complaints, sensation
Surgery Surgeries, surgical, elective, revisional, surgery., oesophagectomy, operation, TURP, esophagectomy, reoperative
Injury Contusion, insult, ischemia, ischemic/reperfusion-induced, ischemia-reperfusion, injuries, ischemia/reperfusion, injury., traumatic, SCI
Medication Medications, prescription, medication(s), antihypertensive, antihypertensives, prescribed, co-medication, prescriptions, prescribing, analgesics
deart et al. [37] and Nguyen et al. [38] both used convolutional neural net-
works to make these predictions from clinical notes, while Pham et al.
[39] used a dynamic memory model (specifically, an RNN). Although all
01 three papers discussed different data, and report different performance
orajn metrics (from a 0.8 F; ccore to a 0.7 c-statistic), it is clear that these
3“*5“9 methods are useful and can be further developed for clinical settings for
0.0 & cﬂ\@r flagging follow-ups or more thorough testing before discharge.
CHF Another common task is ICD code prediction. Patel et al. [35] used
&XD word embeddings trained on non-clinical notes (i.e., PubMed, PMC,
-0.1 Wikipedia, and combinations thereof) and observed an improvement of
u ology gementias 1% in F; score on the automated coding review task by adapting the
éfr@%g{m,ogy embeddings to the clinical space, while Escudié et al. [33] trained
-0.2 embeddings directly on the free-text of EMRs.
@ulmonology @bropolycystic Additionally, in a similar vein to ICD code prediction, Gehrmann
: = : = : = et al. [36] performed patient phenotyping (i.e., predicting 10 conditions
—-0.8 -0.6 -0.4 -0.2 0.0 0.2 from advanced cancer to depression) with F; scores in the mid-80s.

Fig. 5. Pubmed Word embedding visualization. Green text: Anatomical lo-
cation (heart, lung, liver, kidney, brain). Red text: Diseases (RIHD i.e.,
Radiation-Induced Heart Disease, CHF i.e., Congestive Heart Failure, CKD i.e.,
Chronic kidney disease, dementias, fibropolycystic). Blue text: Medical
specialties (cardiology, pulmonology, hepatology, nephrol.ogy, neurology).

Such a system can help streamline the care provided by doctors by
suggesting ICD codes in decision support systems.

Word embeddings have been applied to other clinical predictive
tasks — many on publicly available datasets, which enables reproducible
comparisons between systems. Wang et al. [29] studied the effect of
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Types of corpora used to generate embeddings. Biomedical refers to either of: i) PubMed Central (PMC) articles or ii) PubMed articles. The news corpus is a pre-
trained embedding provided by Google. Combined embeddings refers to any corpora generated by mixing of any of the above options. For combined corpora, we also

listed the work in the individual corpora used in the combination.

Corpora Task(s)

Clinical notes

Clinical information extraction [29-31,16], disease prediction [32-34], medical coding [35], patient phenotyping [36], re-admission prediction

[37-39,17]
Biomedical Clinical information extraction [29,30,40], medical coding [35]
News Clinical information extraction [29]
Wikipedia Clinical information extraction [29,30], medical coding [35]

Combined embeddings Clinical information extraction [29], medical coding [35]

Table 4
Example of pre-processing. The input text has been lowercased, tokenized,
lemmatized, and stripped of stop words and punctuation.

Example

Text
Pre-processed text

‘Patient is suffering from high fever.’
‘patient’, ‘suffer’, ‘high’, ‘fever’

different corpora on the tasks of hand, finger, and wrist fracture de-
tection and of predicting the smoking status of a patient using i2b2’s
(Informatics for Integrating Biology to the Bedside) 2006 dataset [47].
Using a different i2b2 dataset (i.e., the 2008 “Obesity Challenge”),
Dubois et al. [32] predicted different patient phenotypes ranging from
asthma to obesity. Kholgi et al. [34] and De Vine et al. [30] used the
2010 i2b2 dataset for clinical information extraction.

Word embeddings can also be used for information retrieval tasks
such as named entity recognition (NER). After training an ELMo model,
Zhu et al. [61] performed NER using a RNN followed by a conditional
random field (CRF), which was trained on i2b2 dataset.

They compared the model with state-of-the-art models on the i2b2
dataset and found an improvement of 3.4% in F; score.

Zhao et al. [43] trained three versions of a bi-directional RNN for
drug name recognition and classification, using the following types of
word embeddings as input: (1) fixed, pre-trained embeddings treated as
constants, (2) variable word embeddings initialized with pre-trained
embeddings but treated as learnable parameters updated by the model,
and (3) randomly initialized word embeddings which are then updated
by the model. The results showed that all types of RNN perform well,
but the versions that considered word embeddings as learnable para-
meters produced better results. In the case of drug name classification,
the RNN with pre-trained learnable word embeddings showed slightly
better performance as compared to the fixed word embeddings.

Huang et al.[17] tested their ClinicalBERT model on downstream
tasks such as predicting hospital readmission within 30 days using the
MIMIC-III dataset. After pre-processing, the final cohort consisted of
approximately 34K patients. Since ClinicalBERT uses fixed-length
input, the notes were divided into sub-sequences. They used both dis-
charge summaries and early clinical notes for hospital readmission
prediction. ClinicalBERT outperformed the state-of-the-art in both
cases. They also showed that ClinicalBERT provides interpretable pre-
dictions, by revealing which terms in clinical notes were predictive of
patient readmission based on the model’s self-attention mechanism.

Alsentzer et al.[16] evaluated their ClinicalBERT model on two
named entity recognition (NER) tasks (concept extraction and entity
extraction), two de-identification tasks, and a natural language in-
ference task (NLI); they showed that their model performed better than
the original BERT and BioBERT on NER and NLI tasks, but worse on de-
identification. They posited that this is because MIMIC is already de-
identified, with personal health information (PHI) replaced with pla-
ceholder tokens, which affects training and representation.

Beltagy et al.[19] evaluated SciBERT on NER, participant inter-
vention comparison outcome extraction (PICO), classification, relation
classification, and dependency parsing. The empirical results showed

10

that SciBERT often significantly outperformed BERT-Base with minimal
task-specific architectures and without fine-tuning.

As demonstrated in the aforementioned set of applications, word
embeddings are a useful and versatile tool with the ability to perform
well in many predictive tasks. Their utility extends to (often noisy)
clinical note data. Word embeddings can capture valuable information
contained in clinical free-text, at relatively low cost (without the need
for manual annotation or expert curation).

6. Limitations of word embeddings

Although word embeddings are widely used for generating vector
representations of clinical text data, they still have limitations.

6.1. Evaluating word embeddings

Evaluations can often be inconclusive, since the performance of
word embeddings can vary greatly given different tasks [72]. Therefore,
it is important to compare word embeddings in terms of both intrinsic
and extrinsic measures (see Table 7).

Furthermore, evaluation can be inconsistent since different datasets are
used, making it difficult to compare different clinical word embeddings. To
solve this problem, Peng et al.[40] created the Biomedical Language Un-
derstanding Evaluation (BLUE), a benchmark consisting of five tasks (i.e.,
sentence similarity, named entity recognition, relation extraction, docu-
ment multi-label classification and inference). The tasks are derived from
ten existing datasets ranging in genre (i.e., biomedical abstracts and arti-
cles, clinical text notes), size, and difficulty. The aim of BLUE is to provide a
standardized benchmark to allow for comparison of different models. A
model’s performance on the BLUE benchmark is determined by a macro-
average of their F; scores and Pearson correlation scores on the ten tasks.

6.2. Bias

Since word embeddings are trained on real-world data, they may
learn whatever social or cultural biases exist in those data [83]. Bo-
lukbasi et al. [84] identified gender bias in the publicly available GloVe
word embeddings by geometrically evaluating the word embeddings
and checking for analogies that were considered to be stereotypical by
annotators. For example, with word embeddings trained on the Google
News dataset, they reported that certain occupations have a tendency to
be associated with a specific genders and descriptors (e.g., “he” to
“doctor”, “brilliant”, and “shopkeeper”, and “she” to “nurse”, “lovely”,
and “housewife”). The authors proposed a de-biasing algorithm con-
sisting of two steps: 1) identifying the direction of the word embedding
containing ‘gender definitional’ information (i.e., words that must
contain aspects of gender, such as “he” and “nephew”), and 2) re-
moving bias by pushing all other words to the origin according to the
aforementioned dimension of gender.

Word embeddings generally perpetuate biases present in real-world
data. Previous work [85] showed real-world biases in the treatment of
patients in clinical settings, with African American patients being sys-
tematically under-treated for pain relative to white Americans. How
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Available embeddings for clinical data and concepts. Since ELMo models use character information and BERT models use sub-word information, they can generate a

representation for any concept.

Name Model Data/Concepts Terms Dim
PubMed-w2v.bin" word2vec PubMed 2.4M 200
PMC-w2v.bin" word2vec PubMed Central 2.5M 200
PubMed-and-PMC-w2v.bin® word2vec PubMed, PubMed Central 41M 200
wikipedia-pubmed-and-PMC-w2v.bin’ word2vec PubMed, PubMed Central, Wikipedia 5.5M 200
drug word embeddings® word2vec PubMed, DrugBank 553,195 420
AWE-CM [49] word2vec UMLS CUI (concepts) 265M 300
claims_codes_hs_300 [55] word2vec ICD-9 codes (concepts) 51,327 300
claims_cuis_hs_300 [55] word2vec UMLS CUI (concepts) 14,852 300
cui2vec [56] word2vec/GloVe UMLS CUI (concepts) 108,477 500
concept embeddings [58] AiTextML MeSH ID (concepts) 26,103 100
word embeddings [58] AiTextML PubMed 513,196 100
ELMo (PubMed model) [11] ELMo PubMed NA 1024
BioBERT [15] BERT PubMed NA 768/1024
ClinicalBERT [16,17] BERT MIMIC III NA 768

2 http://evexdb.org/pmresources/ngrams/PubMed/.
b http://evexdb.org/pmresources/ngrams/PMC/.

¢ http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-w2v.bin.
4 http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-w2v.bin.

¢ https://github.com/chop-dbhi/drug_word_embeddings.

Table 6

Available datasets for intrinsic evaluation.
Name Metric Data Pairs
SimLex-999 similarity word pairs (free association [71]) 999
WordSim353 relatedness ~ word pairs (general) 353
MEN relatedness word pairs (Wikipedia + web) 3,000
UMNSRS-Similarity similarity UMLS concept pairs 566
UMNSRS-Relatedness  relatedness =~ UMLS concept pairs 588
MayoSRS relatedness ~ SnoMedCT concept pairs 101

these real-world biases manifest in embeddings, and how to correct them
without negatively impacting results is also an active area of research.

6.3. Interpretability

Although the internals of many machine learning models are treated
opaquely, it is often important to provide the reasoning for any clinical
judgments that a model makes. Indeed, it may even be required under
certain interpretations of jurisdictional law [86]. However, providing a
rationale for a model’s decisions based on word embeddings is not
straightforward.

Senel et al. [87] investigated the distribution of semantic categories
in word embeddings in order to measure interpretability of the individual
dimensions. Here, interpretability is measured with a word intrusion test
where, for each word embedding dimension, human annotators are
presented with a set of the five top-ranked words (based on the value of
the target dimension for each word) plus one bottom-ranked word (i.e.,
the intruder word). Human annotators are then asked to identify the
intruder word in a random ordering of the set. The authors also measured
the encoding level (i.e., ‘concept level’) in each word embedding dimen-
sion by comparing a distribution from which the concept words are
sampled, and another from which all other words are sampled. These
comparisons were done using the Bhattacharyya distance [88], which
measures the similarity of two probability distributions. While their ca-
tegorical decompositions of word embedding dimensions showed corre-
lations with semantic categories, this evaluation requires human-defined
clusters of semantic concepts with labels.

Another issue with interpretability is that most word embedding
models encode (and do not distinguish) notions of both similarity and
relatedness (e.g., fever and flu are related but are not similar in
meaning) whereas, in a medical context, we may favour one notion
over the other. For example, we may be interested in all related

11

symptoms of a disease instead of similar words or synonyms. Although
some evaluation sets, such as UMNSRS, have separate measures for
relatedness and similarity judgments, distinguishing between similar
and related words in these models remains an open research challenge.

6.4. Privacy issues for clinical data

Privacy has been a major concern in healthcare, but it is especially
important for clinical data. Culnane et al. [89] experimented on med-
ical records and billing information (not converted to word embed-
dings), and were able to identify a participant based on publicly
available information including Wikipedia and news articles. They were
able to identify famous women based on their dates of birth and
number of children along with their respective dates of birth. The
identification was even easier in the women who gave birth late in life
due to the small cohort size. Similarly, famous athletes were identified
based on publicly available dates of birth and major injuries informa-
tion. The authors also experimented with the effects of perturbing the
dates by a few weeks to preserve privacy but it did not show any sig-
nificant improvement.

Weggenmann et al. reported privacy issues in using vectors of word-
document information. They showed that removing the personal in-
formation of the author of a document does not necessarily result in
confidentiality, and that term-frequency vectors can be used to re-
identify the author in special settings.

More research is needed as to how well word embeddings can
preserve privacy for clinical data. This question is of high importance
because it is very helpful for the research community to use pre-trained
clinical word embeddings, but such embeddings should not be shared
before privacy is ensured. Differential privacy [90] is an area of research
dealing with maximizing accuracy while minimizing privacy violations,
and may form the basis for such activity.

6.5. Lack of publicly available clinical word embeddings

Currently, there are only a few publicly available pre-trained word
embeddings models for general contexts. One of the main issues for
clinical data is that data privacy policies often prevent the release of any
models learned from those data. The result is that researchers are forced
to create their own models using their own data, and it is difficult to
compare results when each research group has a different dataset and
different word embedding models. This may lead to a crisis of non-


http://evexdb.org/pmresources/ngrams/PubMed/
http://evexdb.org/pmresources/ngrams/PMC/
http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-w2v.bin
http://evexdb.org/pmresources/vec-space-models/wikipedia-pubmed-and-PMC-w2v.bin
https://github.com/chop-dbhi/drug_word_embeddings
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Table 8
Examples of word embeddings trained on clinical data (continued).
Word embeddings Evaluation
Paper Corpora Model Intrinsic Extrinsic
Devlin et al., 2018 [12]  BookCorpus + Wikipedia BERT
Peters et al., 2018 [11]  PubMed ELMo
Alsentzer et al., 2019 MIMIC-III (all notes, discharge summaries only) BERT — NER (concept extraction, entity extraction), de-
[16] identification, NLI
Beltagy et al., 2019 papers from Semantic Scholar BERT — NER, PICO, classification, relation classification,
[19] dependency parsing
Huang et al., 2019 [17]  MIMIC-III BERT relatedness between clinical ~ 30 day hospital readmission
concepts
Lee et al., 2019 [15] PubMed, PMC BERT — NER, question answering, relation extraction
Peng et al., 2019 [40] PubMed, MIMIC-IIT BERT, ELMo — sentence similarity, NER, relation extraction,

document multilabel classification, NLI

reproducibility in the community. More research on the potential im-
pacts of these word embedding models, including bias, interpretability,
and privacy, would allow researchers to share models more openly.

7. Conclusion

In this paper, we provide a guide (Fig. 2) for training and using word
embeddings for machine learning tasks in the clinical domain, as well as
an overview of existing work on word embeddings for clinical text.
Algorithm 1 summarizes the procedure for training a word embeddings.

Algorithm 1. Training and using word embeddings on clinical text.

—

: Choose training data from existing sources (Table 3 and Section 3.1) or use your
own data.

2: Pre-process the data (Section 3.2).

3: Choose the algorithm for training word embeddings (Table 1 and Section 2).

4: Train word embeddings or BERT/ELMo model (Section 4).

5: Perform intrinsic evaluation if desired (Table 6 and Section 5.1.1).

6: if using BERT/ELMo

7 Apply the trained model to the target data.

8: else

9 Transform target data to word embeddings using the trained word embed-
dings (Section 4.4).

10: Apply the target task model to the embeddings.

11: Perform extrinsic evaluation on the target task (Section 5).

Appendix A. Types of word embeddings

When training word embeddings for clinical text, it is important to
consider several factors, including: the size of the training corpus, the
domain of the training corpus, the characteristics of the word embed-
ding model, and the quality of the trained embeddings. For quick boot-
strapping, there are several pre-trained embeddings that can often be
easily applied to desired target data (see Table 5).

While word embeddings have enabled advances in natural language
processing for healthcare, more research is needed to fully understand
what the models represent, as well as the potential biases and privacy
issues therein. However, for classification and prediction tasks in the
clinical domain, using unsupervised text representations such as word
embeddings can be faster to implement and provide better results than
traditional feature engineering.
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Traditional representations map words to sparse, high dimensional vectors with a dimensionality of V, i.e., one element per distinct word type in
the vocabulary. In contrast, prediction-based word embedding methods (e.g., word2vec, FastText, Poincaré, and ELMo) map each word in a vo-
cabulary to dense representations whose dimensionality is typically much lower than the size of the vocabulary. These approaches are enumerated

below.

(a) One-hot encoding

A one-hot encoding is a binary vector representation treating the text as categorical data. In this model, each word is represented by a vector of
length equal to the total number of unique words in the corpus, where each position in the vector corresponds to a unique word in the
vocabulary. The values in this vector are all 0, except for the position corresponding to the desired word, which is set to 1. A document can also
be represented as a single vector where all words that appear in the document are set to 1.

A Python implementation is available from scikit-learn®’.
(b) Term Frequency (TF)

Also known as a count vector, a term frequency vector represents each document as a single vector containing the frequencies of the words that
appear in the document. All linguistic information conveyed in a given document is represented by a single vector, where each dimension
denotes the frequency of occurence of the corresponding word in the document.

(c) Term Frequency-Inverse Document Frequency (TF-IDF)

The TF-IDF model is an extension of the TF model where the observed counts are weighted by inverse document frequency (IDF). Application of
the IDF weights acts to smooth observed frequency counts, ultimately reducing the effect of words that are common across many documents. In
the TF model, only the counts of the words are used, which results in the model giving more weight to more common but less discriminatory

27 http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html.
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words such as “the” or “an”. The TF-IDF vector for a term t is document d is as follows:
TF — IDF(t, d) = TF (¢, d) * IDF(t),
where

_ frequency of ¢ in d
total number of terms in d

IDF = log(ﬁ)
n

where N is the total number of documents and n is the number of documents a term t has appeared in. The terms are usually n-grams. An n-gram

is a sequence of n number of adjacent words (or characters) in a given text. A Python implementation available in scikit-learn®,

(e) Word2vec Word2vec is word embedding toolkit that implements two different embedding methods: the Continuous Bag of Words (CBOW)
model and the Skip-gram (SG) model [3-5]. Both the CBOW and SG models are examples of neural embedding models. That is, both models
employ shallow neural network architectures to learn the parameters of the embedding vectors. Although the two models have similar archi-
tectures and approaches to parameter learning (i.e. stochastic gradient descent), the specific loss functions are unique, reflecting the distinct
objectives of the respective models. Detailed derivations of the parameter update equations for both CBOW and SG models can be found in [6].
Relationships between word2vec embeddings (e.g. embeddings learned from “prediction” models) and GloVe embeddings (e.g. embeddings
learned from “count” models) are discussed in [91,92].

Continuous Bag of Words (CBOW)

In the CBOW model, the objective function involves predicting a focal word given its context. The CBOW model is essentially a log-linear
classification model with multinomial/softmax loss function. The goal is to determine parameters of the embedding vectors that are most
probable under the following model:

exp (w¥ w,)
Plws [w, I AN A2

4
Z exp (wiTwc)
i=1

where wy is the focal word, w. is the context (one or more words), and V is the size of the vocabulary.

The simplest case involves a single word context. At which point the hidden representation/layer is merely the vector representation of the
context word. The inner product between the context word vectors and the focal word vectors can be seen as assigning a score. High scores map
to high predicted probabilities under the model. The goal is to assign high scores to focal words that are likely under the context.

The CBOW model can be extended to multi-word contexts, at which point the hidden representation is chosen to be the element-wise sum/
average of the specific context word vectors. Given this hidden representation, the inner product between the latent context representation and
the focal word vector can again be seen as assigning a score. The goal is to assign high scores to focal words that are likely under the multi-word
context.

Skip-gram Model

The Skip-gram model is complementary to the CBOW model in the sense that its objective function involves predicting a context word(s) given a
single focal word.

T
exp(w, w,
PWC Wf =z: - p(c f)

e=t Z exp(wfwl-)
i=1

In the case of a single word context the model is identical to CBOW; however, for multi-word contexts the objective becomes (slightly) more
complicated. As there exists only a single word context, again the hidden layer simply copies the current vector representation of the focal word.
However, the objective involves now predicting C context words. As such, the model loss/objective function is a composition (sum) of the
respective context-specific loss functions. Here there will be C inner-product scores; one for each focal-word context-word pair. The goal will be
to assign high scores to context words that are likely under the given focal word.

CBOW and SG share many commonalities in their model architectures and the way they are trained. At the time of writing, distributed vector
representations of words are common in the machine learning and natural language processing communities. However, most successful ap-
plications are learned using deep neural network architectures that are slow to train on consumer hardware. The chief contributions of the series
of Mikolov papers [3-5] are largely algorithmic (i.e. demonstrating that useful vector embeddings could be learned from shallow neural net-
works architectures in a computationally efficient manner). Specific contributions involve the incorporation of a hierarchical softmax loss
function that is based on Huffman encodings, as well as methods to (negatively) sub-sample frequently occurring pairs of focal/context words.
The original papers also provide an evaluation of the sensitivity of the models to the values of important hyper-parameters. Two key parameters
for this model include: the size of the embedding dimension (as is true with all word vector methods), and also the size/implementation of
context window (how many words, is it applied symmetrically about the focal word, etc.). Additional hyper-parameters of interest include: the
negative sampling rate and the neural network optimization parameters (SGD variant chosen, learning rate, etc.). Both the CBOW and skip-gram

28 http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text. TfidfVectorizer.html.
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models are implemented by Gensim®’ and the Google code archive™°.

Variants of word2vec

Doc2vec and paragraph2vec [7] are variants of the word2vec that generate vectors for documents or paragraphs instead of words. Word2vec is
trained to predict the surrounding words while doc2vec/paragraph2vec focuses on predicting words in the document/paragraph. Unlike
word2vec that predicts the surrounding words only based on the given word, doc2vec also relies on the document to make the prediction of the
words in the document. Doc2vec has two types: Paragraph Vector-Distributed Memory (PV-DM) model that is similar to skip-gram and Para-
graph Vector-Distributed Bag of Words (PV-DBOW) that is similar to CBOW model.

Global Vectors (GloVe)

A co-occurrence matrix is an V by V matrix where V is the vocabulary size (n.b. the vocabulary is the set of all n-grams in the text-corpus). Each
entry of the matrix corresponds to the number of times any two n-grams from the vocabulary co-occur, within a pre-specified discrete context
window, measured across the entire corpus.

The GloVe model was proposed by Pennington et al. [8] as a means for learning word vector embeddings. In contrast to the word2vec approaches
discussed above, GloVe uses global information from the term co-occurrence matrix (TCM) to learn word embeddings. The goal of the GloVe
model is to learn vector embeddings such as to minimize the reconstruction error between co-occurrence statistics predicted by the model and
global co-occurrence statistics observed in the training corpus. The specific loss function which is minimized is:

N N
L=, > f&Xpww + b + b — X;)*
i=1 j=1

X;; represents the observed co-occurrence count from the empirical term co-occurrence matrix. w; and w; represent the vector embeddings of
word i and word j, respectively, and b; and b; represent offsets or biases for word i and word j, respectively. And f(-) is a function defined by the
authors as:

F() = (ﬁ)a if X > Xpax

1 otherwise

The model is trained using stochastic gradient descent (or some variant). Again, the model consists of numerous hyper-parameters that must be
judiciously chosen, including: vector embedding dimension, context window size, value of X, (the authors suggest x,,,, = 100), value of alpha
(the authors suggest 3/4), and various optimization specific hyper-parameters (choice of SGD variant, learning rate, etc.). Code can be found here®'.
FastText

FastText builds on a specific limitation of the word2vec, GloVe and other popular vector embedding models, namely, their inability to handle
out-of-vocabulary (OOV) terms (i.e. any n-gram that is not present in system’s vocabulary). FastText extends the word2vec Skip-gram (SG) model
by considering internal sub-word information [9]. In particular, FastText builds a vector representation for a given word as the composition of its
morphological components. Practically, this can be accomplished by viewing a word as a composition of character level n-grams. Working at a
character level allows the FastText model to share morphological information across words, and also to construct vector representations of words
that are rare or perhaps never seen at all in the training corpus. In the event that character level n-grams are unable to construct a given word,
the model typically assigns a 0-vector to the word under consideration.

The objective is essentially the same as the SG model discussed above, where the goal is to predict word contexts given a focal word. The
distinction for the FastText model being that both the vectors for focal words and the context word(s) are represented as the composition of their
character level n-grams. The objective function is:

2Lz A 2 )

where t is the position in the text and [ is the logistic loss function defined as
I(x) =log(1 + e™)

and s is the scoring function that computes the similarity between a word w and a context c:

slw, ¢| = Z Z4 Ve
8€Gy

where G, is the set of character n-grams in the word w and z; is the vector representation of n-gram g, and v, is the context vector. The first term in the
objective function considers the context words as positive examples, and the second term samples negative examples randomly from the dictionary.
As the FastText model is very similar to the word2vec SG model, many of the comments about hyper-paramter tuning made above apply directly to this
context. An additional hyper-parameter that must be specified in the FastText model is the character n-gram size. In their original paper, Bojanowski
et al. [9] suggest that n-gram size of 3-6 provides sufficient sub-word information for most evaluations they performed. The code is available in C+ + 2,
Poincaré Embedding

Most word embeddings are represented in the Euclidean space. Word vectors in Euclidean space are sometimes unable to capture hierarchical
structure observed in certain corpus (or may require high dimensional embedding dimensions in order to capture this complexity). Poincaré

2% https://radimrehurek.com/gensim.

30 https://code.google.com/archive/p/word2vec/.
31 https://nlp.stanford.edu/projects/glove/.

32 https://fasttext.cc/.
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embeddings [21] represent the data in the hyperbolic space (or more precisely Poincaré ball). Unlike Euclidean space, hyperbolic space has a
constant negative curvature, which helps to capture the hierarchy and similarity of the data more accurately. The hyperbolic distance between
the points u & v in the Poincaré ball is defined as,

_ llu = viP
d(“’ v) - amh(l T wPba - ||vn2))

where arcosh is inverse cosine hyperbolic function and ||. || denoted the Euclidean distance metric. If u and v are away from the boundary of the
ball, d(u,v) is smaller and if they are closer to the boundary it is larger thus preserving the hierarchical/tree-like structure between points.
The Poincare embedding optimization function is defined as,

Q' < argming £ (®) s.t. V€06 <1

where © denotes the word embedding. The loss function .#(0) is defined as,

e—d(u,v)
7@ = ), lg——1
(uv)ez E € 4

Vet (u)

where 2 = (u, v) denotes a set of hypernymy relations and ./"(u) is the set negative examples for u.
The main advantage of this embedding is that less number of dimensions can capture the hierarchical information. A Python implementation of
Poincaré embeddings is available from Gensim®®.

(i) Embeddings from Language Models (ELMo)
ELMo [11] is a contextual character-level embedding method. Most word embeddings predict a focal word given its context or a (set of) context
words given a focal word. In contast, ELMo word representations are computed using a bi-directional RNN language model with character
convolutions over the entire sentence. The weighted sum of the original word vector and all the layer representation (both forward and
backward) are estimated. ELMo vectors can be used by concatenating them to any word embeddings such as word2vec and Fastext. Code and
embeddings pretrained on a large corpus are freely available®*.

(j) Probabilistic FastText
Probabilistic FastText[10] combines Gaussian mixture model and FastText. Each word is represented as a Gaussian mixture model, defined as

K
~ —>
Q=2 Py N | Xt D,
i=1 w,i
where K is the number of components, .#* denotes the Gaussian distribution, {/iw,,-}kK=1 are the mean vectors, {ZW .} are the covariance matrices

and {pw-}kK=l are the component probabilities. The K components represent K different senses of a word.
The mean is estimated using the subword structure using n-grams of characters in the word w,

1
My = Yy + z Zg
ING,,| + 1 geNGy
where v,, dictionary word representation of word w, [ING,, | is the number of n-grams of the word w and z, is a vector associated with the n-gram g.
To train the model they maximize the similarity between the words in the context window and minimize the similarity with a random word. The
loss function is defined as

L(w, ¢, ¢’) = max[0, m — log E(w, ¢) + log E(w, ¢')]

where E denotes a similarity function, c is the context word and ¢’ denotes the random word. This function learns the parameters dictionary
vectors {v,}X ; and character n-gram vectors Z, by pushing the log of similarity of context pair (w, c) higher than a negative context pair (w, c’) by
margin m.
FastText is able to capture the sub-word structure, different word senses and provides better representation of rare/unseen words, however this
method has not been used in the biomedical domain. The code is available®.

(k) Bidirectional Encoder Representations for Transformers (BERT)
BERT [12] consists of a multi-layer bidrectional transformer encoder. It differentiates itself from other conditional language models through
bidirectional pre-training. During pre-training, BERT is trained on the unsupervised ‘masked language modeling and ‘next sentence prediction’
tasks. BERT can be easily fine-tuned for various tasks by adding a task-specific output layer.
Tokenization: BERT uses the WordPiece tokenizer [93], which tokenizes based on the following steps:

1. Initialize the word unit vocabulary with all the individual characters in the language.

2. Build a language model on the training data using the vocabulary from 1.

3. Update the vocabulary with the most frequent combinations of the existing words in the vocabulary iteratively, until a predefined limit of word
units is reached or the likelihood increase falls below a certain threshold.

Pre-training: BERT is trained using two unsupervised tasks: binarized next sentence prediction and masked language modeling. Conditional
language models are trained left-to-right or right-to-left, since training them in a bidirectional manner would allow each word to “see itself”. To

33 https://radimrehurek.com/gensim/models/poincare.html.
34 https://allennlp.org/elmo.
35 https://github.com/benathi/multisense-prob-fasttext.
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circumvent this problem, while at the same training the language model bidirectionally, BERT uses masked language modeling. 15% of the tokens are
randomly masked (i.e., replaced with the “[MASK]” token), and the model is trained to predict the masked tokens.
Pre-trained Models: Two model sizes for BERT are available:

1. BERT-Base with 12 layers of transformer blocks, 12 attention heads, and 110 million parameters.
2. BERT-Large with 24 layers of transformer blocks, 16 attention heads and, 340 million parameters.

Appendix B. Medical relatedness
The Medical Conceptual Similarity Measure (MCSM) is defined as:

k .
MCSM|V, T, k| = —— k@)
V(D) log,(i + 1)

VeV (T) i=1

, where V (T) is the set of concepts of type T, v(i) is the ith closest neighbor of v, k is the size of the neighborhood, and “Ir is an indicator function
which is 1 if concept v(i) is of type T, and O otherwise”. MRM is defined as:

k
MRM|V, T, k =|V1—| > nfUfv-s|®)
k

VEV* i=1
, where “I is the indicator function which returns 1 if any of the medical concepts in the top-k neighborhood of the selected medical concept is an
element with the given relation R, and 0 otherwise” [55].
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