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SUMMARY

The propensity score is defined to be a subject’s probability of treatment selection, conditional on observed baseline
covariates. Conditional on the propensity score, treated and untreated subjects have similar distributions of observed baseline
covariates. In the medical literature, there are three commonly employed propensity-score methods: stratification (sub-
classification) on the propensity score, matching on the propensity score, and covariate adjustment using the propensity
score. Methods have been developed to assess the adequacy of the propensity score model in the context of stratification on
the propensity score and propensity-score matching. However, no comparable methods have been developed for covariate
adjustment using the propensity score. Inferences about treatment effect made using propensity-score methods are only valid
if, conditional on the propensity score, treated and untreated subjects have similar distributions of baseline covariates. We
develop both quantitative and qualitative methods to assess the balance in baseline covariates between treated and untreated
subjects. The quantitative method employs the weighted conditional standardized difference. This is the conditional
difference in the mean of a covariate between treated and untreated subjects, in units of the pooled standard deviation,
integrated over the distribution of the propensity score. The qualitative method employs quantile regression models to
determine whether, conditional on the propensity score, treated and untreated subjects have similar distributions of
continuous covariates. We illustrate our methods using a large dataset of patients discharged from hospital with a diagnosis
of a heart attack (acute myocardial infarction). The exposure was receipt of a prescription for a beta-blocker at hospital
discharge. Copyright # 2008 John Wiley & Sons, Ltd.
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INTRODUCTION

Researchers are increasingly using observational
studies to estimate the effects of treatments and
exposures on health outcomes. In randomized studies
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of treatment effect, randomization ensures that, on
average, treated subjects will not differ systematically
from untreated subjects in both measured and
unmeasured baseline characteristics. Therefore, any
differences in outcomes can be attributed to the
treatment or exposure. Non-randomized studies of the
effect of treatment on outcomes can be subject to
treatment-selection bias because treated subjects
frequently differ systematically from untreated sub-
jects.
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Propensity-score methods are being used with
increasing frequency to estimate treatment effects
using observational data. The propensity score is
defined as the probability of treatment assignment
conditional on measured baseline covariates.1,2

Rosenbaum and Rubin demonstrated a key property
of the propensity score: conditional on the propensity
score, treatment status is independent of measured
baseline covariates.1 In other words, treated and
untreated subjects with the same propensity score will
have similar distributions of observed baseline
covariates.

Three methods of using the propensity score are
commonly employed in the medical literature:
covariate adjustment using the propensity score,
stratification or subclassification on the propensity
score, and matching on the propensity score.3 In
propensity-score matching, pairs of treated and
untreated subjects with a similar propensity score
are formed (while there are other variations to
propensity-score matching, this is the most common
approach). The effect of the treatment on the outcome
is then estimated using the propensity-score matched
sample. In stratification on the propensity score, a
pooled estimate of the treatment effect is obtained
across different strata (often the quintiles) of the
propensity score. Covariate adjustment using the
propensity score uses regression adjustment in which
the outcome variable is regressed on the estimated
propensity score and an indicator variable denoting
treatment selection.3 Each of these three methods was
proposed by Rosenbaum and Rubin1 in their original
article on the propensity score. Systematic reviews of
the use of propensity-score methods in the medical
literature have found that covariate adjustment using
the propensity score is the most commonly imple-
mented propensity-score method in the medical
literature.4–6

In simple randomized experiments, the true
propensity score is known and is fixed by the design
of the experiment. However, in observational studies,
the true propensity score is unknown and must be
estimated using the data. The propensity score is
frequently estimated using a logistic (or probit)
regression model in which treatment selection is
regressed on measured baseline covariates. Since the
true propensity score model is not known, the
researcher must specify the nature of the propensity
score model. The test of whether the propensity score
model has been correctly specified is whether treated
and untreated subjects with similar propensity scores
have similar distributions of measured baseline
covariates.2,7
Copyright # 2008 John Wiley & Sons, Ltd. Pha
Goodness-of-fit diagnostics for the adequacy of
the propensity score model have been developed in
the context of propensity-score matching and strati-
fication on the propensity score. Methods have been
developed to assess whether matching on the
propensity score has resulted in a matched sample
in which the distribution of measured baseline
covariates are similar between treated and untreated
subjects. Several studies have described the use of
standardized differences to compare the distribution of
baseline variables between treated and untreated
subjects in the matched sample.3,8,9 Similarly,
comparison of non-parametric density functions of
the propensity score in treated and untreated subjects
has been proposed.3 Ho et al.7 suggests comparing
higher order moments and important two-way
interactions between treated and untreated subjects.
Similarly, balance diagnostics have been proposed for
when stratification on the quintiles of the propensity
score is employed. In one of the original propensity
score articles, Rosenbaum and Rubin used two-way
ANOVA models to regress each measured baseline
covariate on propensity score quintile (as a five-level
categorical variable), an indicator variable for treat-
ment selection, and the two-way interaction between
these two factors.2 The significance of either the
treatment indicator or the interaction variable was
used to denote that the distribution of that baseline
covariate differed between treated and untreated
subjects within at least one quintile of the propensity
score. Other authors have proposed the following
methods: within quintile side-by-side boxplots to
compare the distribution of the propensity score
between treated and untreated subjects within each
quintile of the propensity score,10 the use of within
quintile standardized differences to compare the dis-
tribution of baseline covariates between treated and
untreated subjects,3,9 and within quintiles quantile–
quantile plots of the estimated propensity score in
treated and untreated subjects.10 While several applied
studies have reported the area under the receiver
operating characteristic (ROC) curve of the propensity
score model (equivalent to the model c-statistic),
recent research has indicated that this does not serve as
a goodness-of-fit test of the propensity score model.9

The area under the ROC curve for the propensity score
model is a measure of model discrimination. However,
different propensity score models can have different
ROC curve areas, yet matching on the different
estimated propensity scores can result in matched
samples in which prognostically important covariates
have equivalent balance between treated and untreated
subjects.9 Despite the frequency with which covariate
rmacoepidemiology and Drug Safety, 2008; 17: 1202–1217
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adjustment using the propensity score is employed in
the medical literature, no goodness-of-fit diagnostics
have been developed for the propensity score model in
this context.
The objective of the current study is to propose

goodness-of-fit diagnostics for the propensity score
model in the context of covariate adjustment using the
propensity score. The paper is structured as follows. In
the next section we propose two goodness-of-fit
diagnostics for the propensity score model. The first
method extends the standardized difference to the
context of covariate adjustment using the propensity
score. We refer to this method as the weighted
conditional standardized difference. The second
method uses quantile regression to compare the
distribution of continuous covariates between treated
and untreated subjects with similar propensity scores.
The section following it describes Monte Carlo simu-
lations used to evaluate the performance of weighted
conditional standardized difference. In the following
section, we describe a case-study illustrating the
application of these methods. Finally, we summarize
our findings.

BALANCE DIAGNOSTICS FOR THE
PROPENSITY SCORE MODEL

The balance diagnostics described above for propen-
sity-score matching and for stratification on the
propensity score share a similarity, despite employing
different methods. Each diagnostic allows one to
compare the distribution of measured baseline
covariates between treated and untreated subjects.
For propensity-score matching, this was done in the
matched sample, while for stratification on the
propensity score, this was done within stratum
(usually the quintiles) defined by the propensity
score. The principal idea behind these diagnostics was
to determine whether, in subjects with a similar
propensity score, treated and untreated subjects had a
similar distribution of baseline covariates.
When covariate adjustment using the estimated

propensity score is employed, the following regression
model is fit to the sample data

Y ¼ a0 þ a1T þ a2Z þ " (1)

where Y denotes the outcome, T is an indicator
variable denoting treatment selection (T¼ 1 denoting
treated; T¼ 0 denoting untreated), and Z denotes the
estimated propensity score (generalized linear models
can be fit for dichotomous or count outcomes, while
survival models can be fit for time-to-event outcomes).
The above model assumes that if the propensity score
Copyright # 2008 John Wiley & Sons, Ltd. Pha
model has been adequately specified, then treated and
untreated subjects with the same estimated propensity
score will have similar distributions of measured
baseline covariates. In other words, by conditioning on
the propensity score, one has eliminated systematic
differences between treated and untreated subjects.

The assumption that the propensity score model has
been correctly specified is critical to the application of
covariate adjustment using the propensity score.
However, in practice, the true propensity score is
not known. Ho et al. describe the propensity score
tautology as follows: the true propensity score is a
balancing score—conditional on the propensity
score—treated and untreated subjects will have the
same distribution of measured baseline character-
istics. While the true propensity score is not usually
known, we know that the propensity score model has
been correctly specified when, conditional on the
propensity score, treated and untreated subjects have
similar distributions of measured baseline covariates.7

The methods developed in this Section will enable
applied researchers to examine the degree to which,
conditioning on the estimated propensity score has
removed systematic differences between treated and
untreated subjects.

Weighted conditional standardized differences

The first proposed diagnostic is a weighted version of
the standardized difference. This allows one to
compare the difference in means of baseline covariates
between treated and untreated subjects with the same
propensity score. This diagnostic can be computed for
both continuous and dichotomous baseline covariates.
The standardized difference is defined as

d ¼ xtreatment � xcontrolffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2treatmentþs2

control

2

q (2)

for continuous variables, and by

d ¼ p̂treatment � p̂controlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂T ð1�p̂T Þþp̂Cð1�p̂CÞ

2

q (3)

for dichotomous variables. The standardized differ-
ence is the difference in means between the two
groups divided by an estimate of the common standard
deviation of that variable in the two groups. It
represents the number of standard deviations by which
the two groups differ.11
rmacoepidemiology and Drug Safety, 2008; 17: 1202–1217
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Let X denote a continuous baseline covariate. The
following linear regression model, estimated using
ordinary least squares (OLS) can be fit to the data

X¼a0þa1Tþa2Zþa3T � Z þ "; " � Nð0; s2Þ (4)

where Z denotes the estimated propensity score and
T denotes treatment status (T¼ 1 denotes treated;
T¼ 0 denotes untreated). We have included an
interaction between Z, the estimated propensity score;
and T, the treatment indicator; to allow the mean
difference in the covariate between treated and
untreated subjects to be different for different values
of the propensity score. For a given value of Z, the
mean predicted baseline covariate is â0 þ â1 þ â2Zþ
â3Z and â0 þ â2Z for treated and untreated subjects,
respectively. Thus, conditional on Z, the standardized
difference comparing the mean of X for treated
subjects with that for untreated subjects is

â1þâ3Z
ŝ

. We
refer to this as the conditional standardized difference.
The absolute value of this term is referred to as the
conditional standardized absolute difference. This
quantity can then be integrated over the distribution of
the estimated propensity score in the study sample to
obtain a weighted conditional absolute standardized
difference that reflects the average standardized
absolute difference between treated and untreated
subjects with the same propensity score

R
Z

jâ1þâ3Zj
ŝ

dZ

where Z denotes the empirical distribution of the
propensity score in the study sample. Note that it is
important to integrate over the distribution of the
propensity score, and not over the range of propensity
score. This is since the distribution of the propensity
score may not be uniform over its range. In some
contexts, there may be relatively few subjects with a
very low or very high propensity score. We propose
integrating the standardized absolute difference rather
than the standardized difference so that positive and
negative differences do not cancel one another. For
instance, assume that among subjects with low
propensity score, the conditional mean is greater for
treated subjects than for untreated subjects, while the
converse is true for subjects with high propensity
scores. Then, integrating the conditional standardized
difference rather than the conditional standardized
absolute difference could mask these differences
between treated and untreated subjects. Furthermore,
we propose that the conditional standardized absolute
difference be integrated rather than the conditional
Copyright # 2008 John Wiley & Sons, Ltd. Pha
absolute difference. By expressing the difference in
units of standard deviation, one can compare the
relative balance of variables measured in different
metrics.
We now describe how the conditional standardized

absolute difference can be co-computed in practice.
First, for a given baseline covariate X, one fits the
linear regression model described in Equation (4), in
which X is regressed on an indicator variable denoting
treatment status, the propensity score, and the
interaction between these two terms. Second, for
each subject in the sample, the following quantity is
estimated:

jâ1þâ3Zj
ŝ

. In this formula, â1 and â3 denote
the estimated regression coefficients for the treatment
indicator and for the interaction between the treatment
indicator and the estimated propensity score, respect-
ively. The square root of the estimate of the residual
variance (the variance of the error term) is denoted by
ŝ. Finally, the mean of the above quantity is
determined across all subjects in the sample. This is
the estimate of the weighted standardized absolute
difference.
The above method can be adapted for dichotomous

baseline covariates. The linear regression model in
Equation (4) can be replaced by a logistic regression
model given below

logitðPrðX ¼ 1ÞÞ ¼ a0 þ a1T þ a2Z þ a3T � Z (5)

For a given value of Z, the predicted probability of
the dichotomous variable can be computed for treated
and untreated subjects. Conditional on Z, the
standardized difference can be computed using
formula (3), and this quantity can be integrated over
the empirical distribution of the propensity score.
We have not proposed tests of balance based on

testing the hypothesis:H0 : a1 ¼ a3 ¼ 0. There are
limitations to balance tests based on statistical tests of
hypotheses. First, the power of such tests is influenced
by sample size. Therefore, given the same quantitative
degree of balance between treated and untreated
subjects, imbalance is more likely to be detected in
larger samples than in smaller samples. Second, in a
given sample, the power of the above test may differ
from that of a simple t-test comparing means between
treated and untreated subjects in the overall sample.
Therefore one could have a situation in which one is
comparing balance before and after conditioning on
the propensity score using two tests that have different
statistical power. Finally, our proposed balance
diagnostics are consistent with the framework of Imai
et al.12 who suggested that, in the context of
rmacoepidemiology and Drug Safety, 2008; 17: 1202–1217
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propensity-score matching, balance diagnostics
should be based on properties of a sample.
Quantile regression to compare conditional
distributions of continuous variables

The methods described in the above section allow one
to quantify the mean difference in conditional means
between treated and untreated subjects. In this section,
we describe methods to qualitatively compare the
distribution of measured baseline covariates between
treated and untreated subjects with the same propen-
sity score.
Quantile regression is a regression model in which a

specified quantile of the dependent variable is reg-
ressed on subject characteristics.13,14 This is in con-
trast to OLS regression, in which the expectation of the
response variable is regressed on subject character-
istics. An advantage to the use of quantile regression
compared to OLS regression is that one can examine
how several quantiles (or percentiles) of the con-
ditional response distribution vary with the predictor
variables.13 In OLS regression, one can only examine
the effect of the predictors on the conditional mean of
the dependent distribution.
Let X denote a continuous baseline covariate. We

propose to use a family of quantile regression models
of the form

qðX; rjT; ZÞ ¼ a0 þ a1T þ a2Z þ a3T � Z (6)

where qðX; rÞ denotes the conditional rth quantile of
the covariate X. The quantile regression model in
Equation (6) can be fit for different regression
quantiles. We propose the use of the 5th, 25th, 50th
(median), 75th, and 95th regression quantiles. These
quantiles are frequently used in summarizing distri-
butions of continuous variables. However, other
quantiles could be selected in practice. Plotting the
estimated regression quantiles against the estimated
propensity score for treated and untreated subjects
separately allows one to examine the distribution of X
at specific values of Z, the estimated propensity score,
in treated and untreated subjects.
The use of quantile regression allows one to

qualitatively examine the conditional distribution of
a continuous baseline covariate. For a dichotomous
baseline covariate that denotes the presence or absence
of a risk factor, one can fit the logistic regression
model described in formula (5). The model-derived
predicted probabilities of the presence of the risk
factor can be determined for treated and untreated
Copyright # 2008 John Wiley & Sons, Ltd. Pha
subjects at value of Z, the propensity score. The
conditional probability of the presence of the risk
factor can then be graphically displayed in treated and
untreated subjects across the range of the propensity
score.

The use of weighted conditional standardized
absolute differences and quantile regression are
intended to be complementary. The use of quantile
regression will provide little additional information if
two conditions are satisfied. First, if conditional on the
propensity score, the distribution of a baseline
characteristic is symmetric within each treatment
group and if the conditional distribution has the same
shape for both treated and untreated subjects. Second,
if for a given treatment group, the conditional
distribution of the baseline covariate is of the same
shape for different values of the propensity score (i.e.,
only the location is shifted). Quantile regression
provides a method to assess whether these two
conditions are satisfied. The use of the weighted
conditional standardized absolute difference only
allows one to assess whether, conditional on the
propensity score, the mean of a covariate is similar
between treated and untreated subjects. Quantile
regression permits a more detailed examination of
the similarity of the conditional distribution between
treated and untreated subjects.
Comparison with balance diagnostics for
stratification on the propensity score

There are some similarities between the proposed
balance diagnostics and those proposed for use with
stratification (subclassification) on the propensity
score. In the most frequent implementation of
stratification on the propensity score, the sample is
divided into five approximately sized strata using the
quintiles of the estimated propensity score. Within
each strata, a stratum-specific treatment effect is
estimated. Thus, the effect of treatment is estimated by
comparing treated and untreated subjects within the
same quintile of the propensity score. The stratum-
specific treatment effects are then pooled to obtain an
overall treatment effect.1,2 Balance diagnostics are
based upon comparing the distribution of baseline
covariates between treated and untreated subjects
within the same stratum (typically the quintiles of the
propensity score). Authors have proposed examining
quintile-specific standardized differences and within-
quintile side-by-side boxplots for comparing the
distribution of variables between treated and untreated
subjects.9,10 The first approach allows for the
rmacoepidemiology and Drug Safety, 2008; 17: 1202–1217
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comparison of means between treated and untreated
subjects within the same quintile. The second approach
allows for a qualitative comparison of the distribution
of continuous covariates between treated and untreated
subjects within the same stratum. Both balance dia-
gnostics compare the distribution of baseline covari-
ates between treated and untreated subjects within the
same stratum. The rationale for this is that one is
comparing outcomes between treated and untreated
subjects in the same stratum. When using covariate
adjustment using the propensity score, one is not
comparing outcomes between treated and untreated
subjects within the same propensity score quintile.
Instead, one is comparing outcomes between treated
and untreated subjects with the same value of the
propensity score. Therefore, it is inadequate simply to
examine whether treated and untreated subjects within
the same propensity-score quintile have similar
distributions of baseline variables. Instead, one must
examine whether treated and untreated subjects with
the same propensity score have similar distributions of
measured baseline covariates.

If conventional balance diagnostics for stratification
on the propensity score indicate that there are
differences in measured baseline covariates between
treated and untreated subjects within the same stratum,
then it is likely that differences exist between treated
and untreated subjects with the same propensity score.
However, if acceptable within-stratum balance is
found, then it does not necessarily follow that
acceptable balance will be observed between subjects
with the same propensity score. In the Appendix, we
describe a setting in which acceptable within-quintile
balance is observed, whereas treated and untreated
subjects with the same propensity score have different
distributions of a baseline covariate. An important
criterion for developing balance diagnostics is that
they must compare the distribution of baseline
covariates in a way that reflects how the propensity
score is being used.
MONTE CARLO SIMULATIONS

Methods

We used Monte Carlo simulations similar to those
described in a prior study to examine the performance
of different methods for propensity-score matching.15

We randomly generated data such that there were 10
variables that were imbalanced between treated and
untreated subjects: five continuous variables and five
dichotomous variables. We assumed that one con-
Copyright # 2008 John Wiley & Sons, Ltd. Pha
tinuous covariate and one dichotomous covariate had a
standardized difference of 0.2 between treated and
untreated subjects in the full sample. Similarly, we
assumed that the remaining four pairs of continuous
and dichotomous variables had standardized differ-
ences of 0.3, 0.4, 0.5, and 0.6 between treated and
untreated subjects in the full sample. We assumed that
the prevalence of exposure was 25%. We randomly
generated datasets of size 1000. For each of the 1000
subjects, we randomly generated an exposure status
from a Bernoulli distribution with parameter 0.25. For
a given standardized difference d, we randomly
generated a continuous covariate from the following
distribution: Ci � NðTi � d; 1Þwhere Ti denotes the
exposure status of the ith subject (1¼ exposed/treated;
0¼ unexposed/untreated). Thus, the distribution of the
continuous covariate would be N(0,1) for untreated
subjects, and N(d,1) for treated subjects, inducing a
standardized difference of d. This was done for
d¼ 0.2, 0.3, 0.4, 0.5, and 0.6. These five continuous
variables are referred to as C1, C2, C3, C4, and C5,
respectively. The prevalence of the five dichotomous
variables amongst the unexposed subjects was taken to
be 0.1, 0.2, 0.3, 0.4, and 0.5. The prevalence of the five
dichotomous variables amongst the exposed subjects
was selected so that the standardized differences of the
five dichotomous variables were 0.2, 0.3, 0.4, 0.5, and
0.6 between treated and untreated subjects. This was
achieved by setting the prevalence of the five
dichotomous variables amongst the exposed subjects
to be 0.168, 0.331, 0.492, 0.642, and 0.776,
respectively. These five dichotomous variables are
referred to as B1, B2, B3, B4, and B5, respectively.
Within each of the 1000 simulated datasets, we

estimated the propensity score using a logistic
regression model in which an indicator variable
denoting treatment status was regressed on the
10 baseline covariates C1, C2, C3, C4, C5, B1, B2,
B3, B4, and B5. We then estimated the weighted
conditional standardized differences for each of these
10 covariates using the methods described in ‘Weighted
conditional standardized differences Section’. The
weighted conditional standardized differences were
then averaged across the 1000 simulated datasets.
Results

The mean conventional standardized differences
comparing the means of the five continuous covariates
between treated and untreated subjects in the original
samples were 0.20, 0.30, 0.40, 0.50, and 0.60,
rmacoepidemiology and Drug Safety, 2008; 17: 1202–1217
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for C1, C2, C3, C4, and C5, respectively. The mean
conventional standardized differences comparing the
prevalence of the five binary covariates between
treated and untreated subjects in the original samples
were 0.20, 0.30, 0.40, 0.50, and 0.60, for B1, B2,
B3, B4, and B5, respectively. The mean weighted
conditional standardized absolute differences for
C1, C2, C3, C4, and C5 across the 1000 simulated
datasets were 0.067, 0.081, 0.091, 0.115, and 0.138,
respectively. The mean weighted conditional standar-
dized absolute differences for B1, B2, B3, B4, and B5

across the 1000 simulated datasets were 0.060, 0.067,
0.078, 0.106, and 0.164, respectively. Thus, one
observes that conditioning on the estimated propensity
score has reduced systematic differences between
treated and untreated subjects. The degree of residual
differences between treated and untreated subjects
conditional on the propensity score increases with the
degree of initial differences between treated and
untreated subjects in the full (unconditional) sample. It
should be noted that none of the weighted conditional
standardized absolute differences are zero. Similar
results were observed in a prior study looking at the
within-quintile balance of observed covariates when
stratification on the propensity score was employed.9

Modest residual imbalance between treated and
untreated subjects was observed, particularly in the
extreme quintiles. This is in contrast to propensity-
score matching in which virtually all imbalance in
measured covariates was eliminated.9
CASE STUDY

Data sources

We used data on 9107 patients who were discharged
alive with an acute myocardial infarction (AMI or
heart attack) from 102 hospitals in Ontario, Canada,
between 1 April 1999 and 31 March 2001. These data
are similar to those reported on elsewhere,16–18 and
were collected as part of the Enhanced Feedback for
Effective Cardiac Treatment (EFFECT) Study, an
initiative that is focused on improving the quality of
care for cardiovascular disease patients in Ontario.19

Data on patient demographics, presenting signs and
symptoms, classic cardiac risk factors, co-morbid con-
ditions and vascular history, vital signs on admission,
and results of laboratory tests were abstracted directly
from patients’ medical records. The exposure of
interest was whether the patient was prescribed a beta-
blocker at hospital discharge, and the outcome of
interest was death within 3 years of hospital discharge.
Copyright # 2008 John Wiley & Sons, Ltd. Pha
Overall, 6178 (67.8%) of patients received a
prescription for a beta-blocker at discharge, while
2929 (32.2%) did not receive a prescription at
discharge. Table 1 compares the characteristics of
patients who did and did not receive a beta-blocker at
hospital discharge. Two sample t-tests were used to
compare the mean of continuous variables between
treated and untreated subjects, while the 2 test was
used to compare the prevalence of dichotomous risk
factors between treated and untreated subjects.
Standardized differences were also used to compare
the balance in measured baseline covariates between
those who did and did not receive a prescription for a
beta-blocker at discharge.3,9,20,21 Twenty-two of the
27 measured baseline covariates had standardized
differences that exceeded 0.10.
Propensity score diagnostics

A propensity score model was fit using a logistic
regression model in which treatment assignment
(beta-blocker vs. no beta-blocker) was regressed on
the 27 covariates listed in Table 1. Each covariate
entered the propensity score model as a main effect
only. The continuous variables were assumed to be
linearly related to the log-odds of receiving a
prescription for a beta-blocker at hospital discharge.
The estimated propensity scores for treated subjects
ranged from 0.0903 to 0.9040, while the estimated
propensity scores for untreated subjects ranged from
0.0758 to 0.8927. Non-parametric estimates of the
distribution of the propensity score in treated and
untreated subjects are illustrated in Figure 1.While the
distribution of the propensity score in untreated
subjects had a heavier left tail, the support of the
distribution of the estimated propensity score was
similar in treated and untreated subjects. Since for
each untreated subject, there was a treated subject with
a similar propensity score, no treated or untreated
subjects were excluded from the analysis. This reflects
how covariate adjustment using the propensity score is
typically employed in practice: all subjects are
retained for the analysis. Occasionally, those treated
subjects with propensity scores greater than those of
all untreated subjects are excluded. Similarly,
untreated subjects with propensity scores lower than
those of all treated subjects are also excluded. Given
the similarity of the support of the distribution of the
estimated propensity score between treated and
untreated subjects, this was not done in our case study.

The methods described in Section ‘Balance
diagnostics for the propensity score model’, were
rmacoepidemiology and Drug Safety, 2008; 17: 1202–1217
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Table 1. Baseline characteristics of treated and untreated subjects

Variable Beta-blocker:
No (N¼ 2929)

Beta-blocker:
Yes (N¼ 6178)

p-value Unconditional
standardized difference

Weighted conditional
standardized difference

Demographic characteristics
Age 69.6� 13.5 65.0� 13.3 <.001 0.342 0.221
Female 1144 (39.1%) 1984 (32.1%) <.001 0.147 0.087

Presenting signs and symptoms
Acute CHF/Pulmonary edema 214 (7.3%) 224 (3.6%) <.001 0.173 0.072

Classic cardiac risk factors
Diabetes 842 (28.7%) 1494 (24.2%) <.001 0.105 0.046
Current smoker 916 (31.3%) 2158 (34.9%) <.001 0.077 0.041
CVA/TIA 354 (12.1%) 493 (8.0%) <.001 0.142 0.115
Hyperlipidemia 767 (26.2%) 2132 (34.5%) <.001 0.179 0.118
Hypertension 1343 (45.9%) 2793 (45.2%) 0.565 0.013 0.019
Family history of CAD 745 (25.4%) 2195 (35.5%) <.001 0.217 0.105

Co-morbid conditions
Angina 975 (33.3%) 1982 (32.1%) 0.251 0.026 0.044
Cancer 110 (3.8%) 154 (2.5%) <.001 0.075 0.035
Dementia 142 (4.8%) 134 (2.2%) <.001 0.157 0.063
Previous AMI 739 (25.2%) 1314 (21.3%) <.001 0.095 0.045
Asthma 323 (11.0%) 181 (2.9%) <.001 0.359 0.019
Depression 256 (8.7%) 377 (6.1%) <.001 0.104 0.056
Peripheral vascular disease 281 (9.6%) 369 (6.0%) <.001 0.141 0.068
Chronic CHF 189 (6.5%) 177 (2.9%) <.001 0.183 0.099

Vital signs on admission
Systolic BP 146.8� 31.4 149.9� 30.9 <.001 0.102 0.080
Diastolic BP 81.8� 18.6 84.9� 18.3 <.001 0.173 0.157
Heart rate 86.9� 25.9 82.1� 22.7 <.001 0.204 0.008
Respiratory rate 22.2� 6.5 20.3� 4.8 <.001 0.351 0.022

Laboratory tests
Glucose 9.8� 5.2 9.2� 5.2 <.001 0.118 0.001
White blood count 10.6� 5.5 10.0� 4.3 <.001 0.130 0.010
Hemoglobin 135.2� 20.0 140.2� 17.7 <.001 0.267 0.134
Sodium 138.7� 4.2 139.2� 3.5 <.001 0.111 0.043
Potassium 4.1� 0.6 4.1� 0.5 <.001 0.127 0.038
Creatinine 114.2� 77.4 98.8� 50.3 <.001 0.254 0.008

Note: Continuous variables are represented as Mean�Standard deviation, while dichotomous variables are represented as N (%).
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then used to assess whether, conditional on the
estimated propensity score, treated and untreated
subjects had similar distributions of both continuous
and dichotomous baseline covariates.
The weighted conditional standardized differences

for each of the measured baseline covariates are
reported in the rightmost column in Table 1.
The weighted conditional standardized differences
exceeded 0.10 for 5 of the 27 baseline covariates.
The weighted conditional standardized differences for
age, history of CVA/TIA, history of hyperlipidemia,
diastolic blood pressure, and haemoglobin were 0.221,
0.115, 0.118, 0.157, and 0.134, respectively. In contrast,
the crude standardized differences exceeded 0.10 for
22 of the 27 baseline covariates. While there is no
threshold for standardized differences that has been
uniformly accepted as indicative of meaningful
imbalance, authors of several papers have suggested
that a standardized difference of 0.1 may indicate
potentially meaningful imbalance in a covariate
between treated and untreated subjects.3,8,9,20,21

The prevalence of each of the 16 dichotomous
variables, conditional on the propensity score, in treated
and untreated subjects separately is displayed in
Figures 2 and 3. The relationship between the propensity
score and the prevalence of the risk factor is depicted by
a solid line for patients prescribed a beta-blocker and by
a dashed line for patients not prescribed a beta-blocker.
Along the base of each plot, a jittered rug plot of the
estimated propensity scores has been included to
describe the distribution of the propensity score in
the sample. For some variables, such as family history of
coronary artery disease and asthma, the prevalence of
the risk factor, conditional on the propensity score,
tended to be similar between treated and untreated
subjects. However, for the majority of risk factors (e.g.,
female gender, acute CHF/pulmonary edema at admis-
sion, history of CVA/TIA, history of hypertension,
history of angina, history of cancer, dementia, previous
AMI, depression, peripheral vascular disease, and
chronic congestive heart failure), the prevalence of
these variables, conditional on the propensity score, was
different between treated and untreated subjects. In
particular, the difference in prevalence between treated
and untreated subjects was amplified at low values of the
propensity score, and was often minimal at higher
values of the propensity score. Interestingly, one of the
variables (hypertension) was balanced between treated
and untreated subjects in the overall sample (standar-
dized difference of 0.013 and a p-value of 0.565 for the 2

test), but, conditional on the propensity score, was
imbalanced between treated and untreated subjects.
However, the weighted conditional standardized differ-
Copyright # 2008 John Wiley & Sons, Ltd. Pha
ence was 0.019, indicating that overall, conditional
on the propensity score, there was a similar prevalence
of hypertension between treated and untreated
subjects.

The distribution of the 11 continuous covariates in
treated and untreated subjects, conditional on the
estimated propensity score, is described in Figures 4
and 5. The conditional distribution of a specific
covariate in a particular treatment group is described
by five lines, representing the 5th, 25th, 50th, 75th, and
95th percentiles of the conditional distribution. The
50th percentile is represented by a thick line, the 25th
and 75th percentiles by medium lines, and the 5th and
95th percentiles by thin lines. The conditional
distribution of the covariates for treated patients is
depicted in solid red lines and for untreated patients by
dashed blue lines. Some variables (e.g., white blood
count, glucose, and potassium) had conditional
distributions that were very similar between treated
and untreated subjects. However, for other variables,
the conditional distributions differed between treated
and untreated subjects. Among subjects with a low
propensity score, the median estimated age for treated
subjects was greater than the 95th percentile of age for
untreated subjects. Similarly, among subjects with a
low propensity score, the percentiles of the conditional
distribution of diastolic blood pressure in untreated
subjects were higher than the corresponding percen-
tiles of the conditional distribution in treated subjects.
However, the conditional distributions were compar-
able among subjects with high propensity scores. For
creatinine, the conditional distribution exhibited
greater positive skewness in untreated subjects than
it did in treated subjects.
DISCUSSION

In the current paper, we have proposed methods to
assess the adequacy of the specification of the
propensity score model. Covariate adjustment using
the propensity score assumes that, conditional on the
propensity score, the distribution of measured baseline
covariates is similar between treated and untreated
subjects. Importantly, it is assumed that this is true
over the entire distribution of the estimated propensity
score. We developed the weighted conditional
standardized absolute difference to quantitatively
compare the conditional difference in baseline
covariates between treated and untreated subjects.
We also proposed that quantile regression models be
used to qualitatively examine the conditional distribution
rmacoepidemiology and Drug Safety, 2008; 17: 1202–1217
DOI: 10.1002/pds
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KEY POINTS

� Diagnostics for whether the propensity score
model has been correctly specified are based on
comparing whether the distribution of measured
baseline covariates is similar between treated
and untreated subjects with similar values of the
propensity score.

� In the context of covariate adjustment using the
propensity score, the weighted conditional
standardized difference can be used to determine
whether, conditional on the propensity score, the
mean of observed baseline covariates is similar
between treated and untreated subjects.

� Quantile regression can be used to compare
whether, conditional on the propensity score, the
distribution of continuous baseline covariates is
similar between treated and untreated subjects.

GOODNESS-OF-FIT DIAGNOSTICS FOR PROPENSITY SCORE 1215
of continuous baseline covariates between treated and
untreated subjects.

Methods for assessing balance have been developed
for use when stratifying on the quintiles of the
propensity score and when matching on the propensity
score. However, no comparable balance diagnostics
have been proposed for use when using covariate
adjustment using the propensity score. Covariate
adjustment using the propensity score was proposed by
Rosenbaum and Rubin1 in their original article on the
propensity score. Furthermore, it is themost commonly
employed propensity-score method in the medical
literature.4–6 The diagnostics described in this paper
will allow for a more rigorous implementation of
covariate adjustment using the propensity score. In the
current paper, we have not addressed estimation using
covariate adjustment using the propensity score, as this
is addressed elsewhere.1,22–24 The focus of the current
manuscript is balance diagnostics for when covariate
adjustment using the propensity score is employed.

Rubin has argued that an advantage to the use of
propensity-score methods is that one can design an
observational study without the outcome being in
sight 25. The diagnostics that we have developed are
consistent with that paradigm. None of the diagnostics
that we present refer to an outcome variable. Indeed, in
the case study, the only variables referenced were the
exposure variable (prescription for a beta-blocker at
discharge) and measured baseline covariates. Rubin
suggests that ‘diagnostics for the successful design of
observational studies based on estimated propensity
scores . . . is a critically important activity in most
observational studies’ 26. Our proposed diagnostics
will thus contribute to improving study design when
the propensity score is used for covariate adjustment.
While covariate adjustment using the propensity score
was described by Rosenbaum and Rubin1 and is the
most commonly used propensity-score method in the
medical literature, it is not without its limitations. In
particular, unlike other propensity-score methods, it
assumes that the outcomes regression model has been
correctly specified26.

In summary, we have proposed diagnostics for
assessing whether the propensity score model has been
adequately specified when covariate adjustment using
the propensity score is used to estimate causal
treatment effects. Methods have previously been
developed for assessing whether matching or stratify-
ing on the propensity score has reduced or eliminated
systematic differences between treated and untreated
subjects. However, no comparable methods have been
proposed for when the propensity score is used for
covariate adjustment. Given that this approach is the
Copyright # 2008 John Wiley & Sons, Ltd. Pha
most commonly implemented propensity-score
method in the medical literature, the proposed
methods will improve the implementation of propen-
sity score methods in the medical literature.
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APPENDIX. EXAMPLE OF A SETTING IN
WHICH TREATED AND UNTREATED
SUBJECTS HAVE DIFFERENT
DISTRIBUTION OF A BASELINE VARIABLE
BUT IN WHICH THERE IS ACCEPTABLE
WITHIN-STRATUM BALANCE

Assume that the first quintile of the estimated
propensity scores includes those subjects whose
estimated propensity score lies in the interval (0,0.2).
Let XT and XC denote the value of the baseline

variable X for treated and untreated subjects,
respectively. Let Z denote the value of the estimated
propensity score.
Define XT ¼ 0:1Z þ " and XC ¼ 0:2� 1:9Z þ ",

where " � Nð0; sÞ. This is equivalent to saying that
within the first stratum, XT � Nð0:1Z; s) and that
XC � Nð0:2� 1:9Z; sÞ. Then, for Z¼ 0.1 (the mid-
point of the stratum), the distribution of X will be the
same for treated and untreated subjects. However, for all
other values of Z in the interval (0,0.2), the distribution
of X will be different for treated and untreated subjects.

Assumewithin the propensity-score stratum (0,0.2),
the propensity score is uniformly distributed for both
treated and untreated subjects. Then, one can determine
the mean value of XT and XC within the propensity-
score stratum (note: E[X] denotes the mean or
expectation of a random variable):

E½XT� ¼ E½0:1Z þ "� ¼ 0:1E½Z� þ E½"� ¼ 0:1
� 0:1þ 0 ¼ 0:01.

Similarly,
rmacoepidemiology and Drug Safety, 2008; 17: 1202–1217
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E½XY� ¼ E½0:2� 1:9Z þ "� ¼ E½0:2� � 1:9E½Z�
þE½"� ¼ 0:2� 1:9� 0:1þ 0 ¼ 0:2� 0:19 ¼ 0:01
Therefore, the average value of X is the same

between treated and untreated subjects within the first
propensity-score stratum. However, for all values of
the propensity score in the stratum (except for
Z¼ 0.1), the distribution of X is different between
treated and untreated subjects.
Copyright # 2008 John Wiley & Sons, Ltd. Pha
The above example is intended to examine to
highlight a specific setting. However, each of the
assumptions can be relaxed, and the same principal
can still be found to hold. For simplicity of the
mathematical derivations we have presented a simple
scenario.
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