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Abstract 

Background:  Diabetes mellitus is a prevalent metabolic disease characterized by chronic hyperglycemia. The ava-
lanche of healthcare data is accelerating precision and personalized medicine. Artificial intelligence and algorithm-
based approaches are becoming more and more vital to support clinical decision-making. These methods are able 
to augment health care providers by taking away some of their routine work and enabling them to focus on criti-
cal issues. However, few studies have used predictive modeling to uncover associations between comorbidities in 
ICU patients and diabetes. This study aimed to use Unified Medical Language System (UMLS) resources, involving 
machine learning and natural language processing (NLP) approaches to predict the risk of mortality.

Methods:  We conducted a secondary analysis of Medical Information Mart for Intensive Care III (MIMIC-III) data. Dif-
ferent machine learning modeling and NLP approaches were applied. Domain knowledge in health care is built on 
the dictionaries created by experts who defined the clinical terminologies such as medications or clinical symptoms. 
This knowledge is valuable to identify information from text notes that assert a certain disease. Knowledge-guided 
models can automatically extract knowledge from clinical notes or biomedical literature that contains conceptual 
entities and relationships among these various concepts. Mortality classification was based on the combination of 
knowledge-guided features and rules. UMLS entity embedding and convolutional neural network (CNN) with word 
embeddings were applied. Concept Unique Identifiers (CUIs) with entity embeddings were utilized to build clinical 
text representations.

Results:  The best configuration of the employed machine learning models yielded a competitive AUC of 0.97. 
Machine learning models along with NLP of clinical notes are promising to assist health care providers to predict the 
risk of mortality of critically ill patients.

Conclusion:  UMLS resources and clinical notes are powerful and important tools to predict mortality in diabetic 
patients in the critical care setting. The knowledge-guided CNN model is effective (AUC = 0.97) for learning hidden 
features.
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Background
Diabetes mellitus is a prevalent metabolic disease char-
acterized by chronic hyperglycemia. The rate of inci-
dence and prevalence of patients with Diabetes mellitus 
type 2 among adults is increasing over time and has 
led to an increase in the number of patients admitted 
in the intensive care unit (ICU). These diabetic patients 
use more than 45% of resources in the ICU compared 
to the patients associated with other chronic diseases 
[1]. Additionally, it is well known that patients admitted 
in ICU due to diabetes are more prone to diseases and 
risk complication; one of these risk factors is due to the 
hampered immune cell response to the disease [2]. Fur-
thermore, these risks can directly impact the survival 
of diabetic patients in the ICU. Only a few studies have 
been conducted on the mortality of diabetes mellitus 
patients; most of them are limited to factors associated 
with the increased mortality in the ICU setting [3].

The prognostic models developed previously were 
based on the Cox regression model and linear regres-
sion models. These models work best when the dura-
tion of diabetes is known and the data such as cohort 
characteristics, is a contributing factor [4]. To date, 
only a few studies have taken various combinations of 
factors into consideration to predict mortality. Anand 
et  al. used predictive modeling, along with a combi-
nation of five key variables (type of admission, mean 
glucose, hemoglobin A1c, diagnoses, and age), to pre-
dict mortality, which achieved a fit with AUC values of 
0.787 [3].

Meanwhile, the clinical notes that contain the 
patients’ medical records are considered important 
resources to solving critical clinical issues that are dif-
ficult to obtain from other components of the elec-
tronic health records (EHR), such as laboratory data. 
When processed, these notes in natural language pro-
vide detailed patient information and help with clini-
cal reasoning and inferences [5, 6]. More recently, 
machine learning algorithms, natural language process-
ing (NLP), and deep learning models have been utilized 
to perform text processing and classification for under-
standing intensive care risks. These approaches have 
been taking into consideration the physiological [7, 8], 
vital [9] and medication profiles [10].

Recently, text classification methods have been sug-
gested to help in clinical document clustering; for 
example, some studies have utilized automated clini-
cal document clustering for diagnosis identification 

and clinical procedures [11], identifying adverse drug 
effects [10], etc. Lexical features, such as bag-of-words 
or bag-of-concepts approach, are used by integrat-
ing medical ontologies, such as Unified Medical Lan-
guage System (UMLS) Metathesaurus to embed clinical 
knowledge as machine computable information [12]. 
The state-of-art approach for text classification uses 
deep learning algorithms, such as neural network mod-
els with the distributed clinical text representation, and 
can learn complicated entity embeddings with the algo-
rithms itself [11]. For instance, Yao et al. applied convo-
lutional neural networks (CNN) with word embedding 
and UMLS entity embeddings to recognize and predict 
classes using trigger phrases [13]. Their work showed 
that combining domain knowledge and CNN models 
are promising for clinical text classification and outper-
forming obesity challenges [13]. Similarly, Hughes et al. 
utilized a deep learning algorithm at the sentence level 
for word representation with regard to medical text 
classification and were able to achieve a competitive 
model performance [14]. Domain knowledge in health 
care is built on the dictionaries created by experts who 
defined the clinical terminologies such as medica-
tions or clinical symptoms. This knowledge is valuable 
to identify information from text notes that assert a 
certain disease. Knowledge-guided models can auto-
matically extract knowledge from clinical notes or bio-
medical literature that contains conceptual entities and 
relationships among these various concepts [15].

The avalanche of healthcare data is accelerating pre-
cision and personalized medicine. Artificial intelligence 
and algorithm-based approaches are becoming more 
and more vital to support clinical decision-making, 
health care delivery and health services [16–18]. These 
methods are able to augment health care providers by 
taking away some of their routine work and enabling 
them to focus on critical issues [19, 20]. In this study, 
we proposed a new method that combines machine 
learning and knowledge-guided feature extraction to 
predict mortality among patients with diabetes mel-
litus. Additionally, our work demonstrates that effec-
tively applying NLP to clinical notes and extracting 
meaningful features can lay the foundation for building 
machine learning models that are predictive for mortal-
ity in critically ill patients with diabetes. From a practi-
cal point of view, our prediction model could be used to 
better understand and forecast the mortality risks for 
critically ill patients with diabetes.

Keywords:  ICU, Diabetic disease, Clinical notes, Machine learning, Natural language processing, Mortality, Word 
embedding, Entity embedding, Deep learning
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Methods
Data were extracted from Medical Information Mart for 
Intensive Care-III (MIMIC-III) data using SQL queries 
[21]. The database contains information regarding ICU 
admission, medications, vitals, duration of stay, ICD-
9-CM diagnosis and laboratory reports. The patients 
with ICD-9-CM diagnosis code for diabetes mellitus 
(Diabetes type 1 and 2, secondary and gestational dia-
betes) admitted in the ICU. Pre-processing and analyses 
were performed using Python programming. The diabe-
tes severity index was calculated with the points assigned 
for the specific ICD-9-CM codes, and the predictive 
model of mortality was generated with test and train-
ing sets using Python scikit-learn packages for machine 
learning and statistical analysis [22]. The predictive 
model pipeline was constructed using the clinical NLP 
system, clinical text classification, knowledge extraction 
system, the UMLS Metathesaurus, Semantic Network 
and learning algorithms. Multiple ICU encounters of the 
same patients were assigned into either a held-out test set 
or the training set, their information was concatenated 
together to form one record.

Data processing
All data processing was conducted using the Python pro-
gramming language. The variables of gender, type of dia-
betes and severity score were calculated for each patient. 
The severity score was measured by the degree of organ 
dysfunction using the sequential organ failure assess-
ment (SOFA) score [23]. The six organ system subscores 
(i.e. respiratory, coagulation, hepatic, cardiovascular, 
neurologic, and renal) of SOFA were scaled from 0 (no 
dysfunction) to 4 (severe dysfunction). The six subscores 
were measured in 24-h periods for the first 72 h of stay 
in all patients, and the highest score achieved was used 
as the clinical feature for clustering [24]. Simplified Acute 
Physiology Score II (SAP II) [25] and Acute Physiology 
Score III (APS III) [26] were calculated following the 
standard guidelines. These clinical information are use-
ful to validate the performance of the models. The demo-
graphic data, clinical data and the severity score were 
merged into a single data frame for further analysis. The 
entire dataset was split in the approximate ratio of 7:3 to 
the training and testing sets.

Clinical word and text representation
Text classification is useful to present medical language 
that can be leveraged to learn the phrases that are rel-
evant to the medical condition in the clinical notes. 
NLP models can extract this valuable information, in 
conjunction with structured data analysis, can lead to 
a better understanding of the diseases [27] and a more 
precise phenotyping of the patients [28]. The intelligent 

phenotyping can assist clinical decision support by 
improving the workflow and reviewing clinical charts, 
etc. The text classification was performed using pheno-
typing models—CNN. MetaMap [29] was applied when 
we identified medical concepts from clinical notes in the 
MIMIC-III dataset. The extracted medical concept fea-
tures were from UMLS.

The UMLS Metathesaurus was used to filter clinically 
relevant concepts in the clinical notes [12]. To acquire 
UMLS concept unique identifiers (CUIs), the entity rep-
resentations were used to identify and normalize lexical 
variants from the unstructured text content. The full clin-
ical text was linked to CUIs in UMLS [12] via MetaMap. 
After entity linking, each clinical record was represented 
as a bag of CUIs. The UMLS CUIs were restricted within 
clinically relevant semantic groups and types. The neural 
word embedding model, word2vec, was utilized to learn 
word embeddings from different corpora using the con-
tinuous bag-of-words method [30].

Predictive machine learning models
The mortality rate of the patients was the primary out-
come of the predictive model and we studied predic-
tion risks of hospital mortality. The machine learning 
models were used to predict which diabetic patients 
are most likely to die in the ICU, thus providing better 
treatment guidance to health care providers. All model 
fitting was conducted using packages from Python Scikit-
learn packages. The package was used to fit the regres-
sion model that contained all the relevant variables [3] to 
determine which variables have the greatest impact on 
mortality. The GLM package was used to fit the binom-
inal logistic regression model. In the model, 70% of the 
sample was used as the training set, while the remain-
ing 30% of the sample was used for validation. The key 
variables for these statistical machine learning predictive 
models include social demographics variables, such as 
age, gender and race, and critical clinical variables, such 
as hospital length of stay, SOFA scores, SAPS II, and APS 
III. All the feature variables are shown in Table  1; they 
were used in bivariate analyses to correlate with the pre-
diction of mortality risk. The p-values less than 0.05 were 
considered significant for all the variables for multivari-
ate analysis.

Following the logistic regression model, we built a ran-
dom forest model to predict mortality risk using the Ran-
domForestClassifier package with sklearn. The variables 
extracted from the MIMIC-III database were used in the 
analysis. The model was initially trained with a single 
decision tree, and the depth was further increased until 
train and test sets began to diverge. Probability estimates 
were used to plot the Receiver operating curve (ROC) 
curve. The ROC curves were generated by altering the 
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thresholds of the machine learning models. The perfor-
mance of all the employed models were compared by 
area under the curve (AUC) measures. Furthermore, we 
evaluated more machine learning models on this diabetic 
cohort. (Table 2).

Knowledge‑guided convolutional neural networks
To apply the Knowledge-guided CNN to clinical notes, 
we first identified trigger phrases using the rule that 
was developed to tackle semantic classification tasks 
[31], which were then utilized to predict classes. The 

trigger phrases are the name of diseases and their alter-
native synonyms. Next, a CNN on the trigger phrases 
with word embeddings and UMLS CUIs were trained. 
We used the Knowledge-guided CNN to combine CUI 
features and word features. It employed CUIs embed-
dings of clinical notes and pre-trained word embed-
dings as the input. The input layer contained word 
embeddings and entity embeddings of selected CUIs 
in each clinical record. Max pooling was utilized to 
select the most prominent features that have the high-
est values in the convolutional feature map. After that, 
the max pooling results of entity and word embeddings 
were concatenated. We adopted the same parameter 
settings for Knowledge-guided CNN from a previ-
ous study [13]; the convolution kernel size was 5, the 
number of convolution filters was 256, the dimension 
of hidden layer in the fully connected layer was 128, 
dropout keep probability was 0.8, the number of learn-
ing epochs was 30, batch size was 64, learning rate was 
0.001. To address imbalance, we experimented with 
random under-sampling with the training class ratio as 
1:3. Under-sampling was employed to improve the clas-
sifiers to a reasonable range,;some observations in the 
majority class were removed [32].

Table 1  Characteristics of diabetic patients in ICU

SOFA Sequential Organ Failure Assessment, IQR interquartile range, LOS length of stay, MODS multiple organ dysfunction syndrome, SAPS II Simplified Acute 
Physiology Score II, APS-III Acute Physiology Score III (APS) III

Mortality
(n = 1164)

Survival
(n = 8790)

Gender, No. (%)

 Male 658 (56.53) 5118 (58.23)

 Female 506 (43.47) 3672 (41.77)

Age, median (IQR), y 73.51 (63.16–80.36) 66.99 (57.35–76.23)

Race/ethnicity, No. (%)

 White non-hispanic 762 (65.46) 5879 (66.88)

 Black non-hispanic 117 (10.05) 1045 (11.89)

 Hispanic 39 (3.35) 382 (4.35)

 Asian 23 (1.98) 199 (2.26)

 Other 223 (19.16) 1285 (14.62)

Hospital LOS, median (IQR), d 6.27 (2.07–13.76) 7.29 (4.56–12.10)

Max subscores in the first 72 h, median (IQR)

 Respiration 2 (0–3) 0 (0–2)

 Coagulation 0 (0–1) 0 (0–1)

 Hepatic 0 (0–1) 0 (0–0)

 Cardiovascular 1 (1–4) 1 (1–1)

 Neurologic 3 (2–4) 2 (0–4)

 Renal 1 (0–2) 0 (0–1)

SAPS II, median (IQR) 50 (39–61) 33 (26–42)

APS III, median (IQR) 63.5 (48–81) 40 (31–53)

SOFA_mean in the first 7 days, median (IQR) 6.67 (4.33–9.4) 3 (1.71–4.67)

SOFA_median in the first 7 days, median (IQR) 7 (4–10) 3 (1.5–5)

Table 2  Performance of machine learning models

AUC​ area under the curve, PPV positive predictive value, TPR true positive rate

AUC​ PPV TPR F1 score

Logistic regression 0.82 0.63 0.25 0.35

Random forest 0.86 0.81 0.34 0.48

AdaBoost 0.84 0.68 0.32 0.44

Gradient boosting 0.83 0.55 0.39 0.46

XGBoost 0.87 0.77 0.37 0.50

ANN 0.86 0.77 0.34 0.47

Majority voting 0.87 0.82 0.33 0.47
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Results
Table  1 presents characteristics of diabetic patients in 
the ICU. There were 9954 patients in the MIMIC-III 
with different types of diabetes (Diabetes type 1 and 
2, secondary and gestational diabetes). 1164 (11.69%) 
of them died during the hospital course, while 8790 
(88.31%) survived. Those surviving patients had a 
longer hospital stay (median = 7.26). We also measured 
the degree of organ dysfunction using the sequential 
organ failure assessment (SOFA) score [23] in patients 
admitted to the ICU. The six subscores were measured 
in 24-h periods for the first 72 h of stay in all patients, 
and the highest score achieved was used as the clinical 
feature for clustering. The 72-h time window was cho-
sen as a proxy for the early phase of critical illness and 
because a large portion of organ dysfunctions tend to 
peak within the first days after ICU admission [33]. We 
also included the Simplified Acute Physiology Score 
(SAPS) II and Acute Physiology Score (APS) III to make 
the model more robust [3].

Predicative machine learning models
We ran different machine learning models to predict 
mortality risks using the structured EHR data. Table 2 
shows the performance of various machine learning 
models; each model presents high sensitivity and speci-
ficity. Majority voting and XGBoost performed better 
than other models. Majority voting had the highest pre-
cision, while Gradient boosting had the highest recall. 
Both Majority voting and XGBoost had the best AUC.

Figure  1 presents the ROC for the machine learn-
ing models. When we put all the variables of interests 
into different models, the AUC of Majority Voting was 
0.8666, which suggests that the model could predict 
mortality well.

Knowledge‑guided convolutional neural networks
Table  3 shows the performance of CNN using word 
embedding and knowledge-guided CNN using 
CUI + word embedding. We note that the CNN model 
with word embeddings performed better than the assis-
tant with CUIs, which means adding CUI embeddings 
as additional input did not improve the performance 
for this cohort. This is likely due to the features of dia-
betic diseases, as CUIs were ambiguously connected to 
their embeddings rather than providing more semantic 
information. Meanwhile, MetaMap may generate some 
unnecessary noise, such as irrelevant CUIs [11]. Also, 
some useful medical concepts may not be recognized, 
while some false medical concepts may be wrongly rec-
ognized when applying MetaMap.

Even so, the knowledge-guided CNN model with word 
embeddings still performed better than machine learning 
results which just utilized structured EHR data. Further 
studies are needed, for instance, filtering CUIs based on 
semantic types may improve the performance.

Discussion
Chronic diseases introduce multi-factorial issues to 
patients and healthcare systems, especially to critically 
ill patients in ICU [34]. This study contributes to differ-
ent aspects that include the comparison of performance 
of different data representation and the supervised learn-
ing tools, such as machine learning on EHR data and 
NLP approaches on the medical subdomain classification 
using the clinical unstructured data. We also concluded 
that the NLP method using the UMLS concept restricted 
to semantic information based on the bag-of-concepts 
feature yielded better optimal results. The use of the 
standardized terminology proved to be a good knowledge 
representation approach, thereby leading to the possibil-
ity of future clinical EHR system integration. Likewise, 
the word vectors trained by our datasets may also be use-
ful for future clinical machine learning tasks.

We also propose that our method can be used for 
clinical notes without medical specialization infor-
mation. Identifying the clinical subdomain of a clini-
cal note may assist clinicians in mitigating patients’ 
unsolved problems to adequate medical specialties and 
experts in time. This algorithm-based method will also 
assist health care providers to make clinical decisions 

Fig. 1  Receiver operating curve (ROC) of machine learning models

Table 3  Performance of  CNN using word embedding 
and knowledge-guided CNN using CUI + word embedding

AUC​ PPV TPR F1 score

CNN: text + CUIs 0.88 0.8915 0.9898 0.9381

CNN: text 0.97 0.9587 0.9133 0.9354
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and provide the best possible care to all the critically ill 
patients with diabetes.

Conclusion
In this study, we developed several predictive models 
to interpret the mortality of diabetes mellitus patients 
admitted in ICU. We observed the different perfor-
mance of predictive machine learning models and their 
interpretability of the NLP models based on the feature 
sets extracted from the clinical notes. We predicted the 
mortality of ICU patients, taking into consideration the 
various factors that had statistically significant impacts 
on mortality. Based on the results, it is evident that the 
medical subdomain can be classified accurately using 
the clinically interpretable supervised learning based 
on NLP approaches.

We applied rule-based feature engineering and 
knowledge-guided deep learning approach to train 
a knowledge-guided CNN model with word embed-
dings and UMLS CUIs entity embeddings. The evalu-
ation results show that the CNN model is effective for 
learning hidden features. Although CUI embeddings 
did not introduce improvement to the whole perfor-
mance of the NLP model, they were still very helpful 
when building clinical text representations. More clini-
cal databases and different patient cohorts are needed 
to evaluate our model in the future.
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