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Abstract

IMPORTANCE There is a lack of studies exploring the performance of a deep learning survival neural
network in non–small cell lung cancer (NSCLC).

OBJECTIVES To compare the performances of DeepSurv, a deep learning survival neural network
with a tumor, node, and metastasis staging system in the prediction of survival and test the reliability
of individual treatment recommendations provided by the deep learning survival neural network.

DESIGN, SETTING, AND PARTICIPANTS In this population-based cohort study, a deep learning–
based algorithm was developed and validated using consecutive cases of newly diagnosed stages I to
IV NSCLC between January 2010 and December 2015 in a Surveillance, Epidemiology, and End
Results database. A total of 127 features, including patient characteristics, tumor stage, and
treatment strategies, were assessed for analysis. The algorithm was externally validated on an
independent test cohort, comprising 1182 patients with stage I to III NSCLC diagnosed between
January 2009 and December 2013 in Shanghai Pulmonary Hospital. Analysis began January 2018
and ended June 2019.

MAIN OUTCOMES AND MEASURES The deep learning survival neural network model was
compared with the tumor, node, and metastasis staging system for lung cancer–specific survival. The
C statistic was used to assess the performance of models. A user-friendly interface was provided to
facilitate the survival predictions and treatment recommendations of the deep learning survival
neural network model.

RESULTS Of 17 322 patients with NSCLC included in the study, 13 361 (77.1%) were white and the
median (interquartile range) age was 68 (61-74) years. The majority of tumors were stage I disease
(10 273 [59.3%]) and adenocarcinoma (11 985 [69.2%]). The median (interquartile range) follow-up
time was 24 (10-43) months. There were 3119 patients who had lung cancer–related death during the
follow-up period. The deep learning survival neural network model showed more promising results
in the prediction of lung cancer–specific survival than the tumor, node, and metastasis stage on the
test data set (C statistic = 0.739 vs 0.706). The population who received the recommended
treatments had superior survival rates than those who received treatments not recommended
(hazard ratio, 2.99; 95% CI, 2.49-3.59; P < .001), which was verified by propensity score–matched
groups. The deep learning survival neural network model visualization was realized by a user-friendly
graphic interface.

CONCLUSIONS AND RELEVANCE The deep learning survival neural network model shows
potential benefits in prognostic evaluation and treatment recommendation with respect to lung
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Abstract (continued)

cancer–specific survival. This novel analytical approach may provide reliable individual survival
information and treatment recommendations.

JAMA Network Open. 2020;3(6):e205842. doi:10.1001/jamanetworkopen.2020.5842

Introduction
Lung cancer is the most commonly diagnosed cancer in China and the second in the United States,
approximately 85% of which is non–small cell lung cancer (NSCLC).1 The precise stratification of
patients with NSCLC into groups according to survival outcomes represents a crucial step in
treatment. The staging system in the 8th edition of the American Joint Committee on Cancer
classifies patients based on tumor, node, and metastasis (TNM) staging.2 However, the survival rate
within the same stage cohort varies widely.3-5 It has been found that other independent prognostic
factors including age, sex, histology, and treatment choices could significantly contribute to
individualized predictions of survival.6

To improve the precision of lung cancer survival estimations, Cox proportional hazard models
have gained popularity as a way of predicting outcomes.7 For example, the nomogram is a reliable
tool that has demonstrated the ability to quantify risk by combining and clarifying significant clinical
characteristics for clinical oncology.6 By drafting a concise chart of an outcome-risk predictive model,
a nomogram derives the risk probability of a specific event, such as lung cancer–specific survival
(LCSS). In various cancers, nomograms possess the ability to derive more precise risk predictions
when incorporated with TNM staging.8,9 However, these models have several limitations with
respect to time-to-event prediction for the clinical management of patients with cancer, including
the precise evaluation of overall survival and time to progression.10 Moreover, these models make
linearity assumptions rather than perform nonlinear analyses that reflect real-world clinical
characteristics.11 Therefore, there is a need for better solutions that focus on nonlinear variables.12

Deep learning networks can learn the highly intricate and linear/nonlinear associations between
prognostic clinical characteristics and an individual’s risk of death from LCSS.13 In application, these
networks have even shown potential for providing individual recommendations based on the
calculated risk.14 For example, by analyzing clinical data in the Surveillance, Epidemiology, and End
Results (SEER) cancer registry, Bergquist et al15 assembled computerized methods including random
forests, lasso regression, and neural networks to achieve 93% accuracy in predicting lung cancer
stages. In another study, Corey et al16 developed a software package (Pythia) based on machine
learning models that incorporated a patient’s age, sex, clinical baseline, race/ethnicity, and
comorbidity history to determine the risk of postoperative complications or deaths. Matsuo et al17

also developed a deep learning network model that has demonstrated a higher C statistic than the
traditional proportional hazard regression model (C statistic = 0.795 vs 0.784) for progression-free
survival analysis. Furthermore, Katzman et al18 developed a novel deep learning method for survival
analysis that uses a deep learning network to integrate Cox proportional hazards, which is referred
to as the learning survival neural network (DeepSurv). The authors demonstrated that DeepSurv
performed as well as published survival models and could be used to provide treatment
recommendations for better survival outcomes.

The present study design follows the American Joint Committee on Cancer criteria for model
adoption and the transparent report of a deep learning architecture for individual prognosis and
treatment recommendation. In this study, we first describe the performance of DeepSurv18 on real-
life clinical data sets. Second, we elucidate how the DeepSurv model can learn complex associations
between an individual’s characteristics and the outcome benefits of different treatments.
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Methods

Eligibility Criteria and Clinical Information
All patients gave informed oral consent prior to data collection. After obtaining institutional review
board approval from Shanghai Pulmonary Hospital, we selected patients from the SEER 18 Regs
Research Data + Hurricane Katrina Impacted Louisiana Cases, Nov 2017 Sub, which includes clinical
records on cancer occurrences in 18 areas of the United States and contains approximately 27.8% of
the population. Clinical cases were included if the following criteria were met: pathologically
confirmed primary stage I to IV NSCLC (only adenocarcinoma and squamous cell carcinoma) between
January 2010 and December 2015 and the presence of 1 malignant primary lesion. From the SEER
database (eTable 1 in the Supplement), we collected the baseline information of cases (sex, age, and
marriage status), tumor characteristics (location, size, histologic grade, histologic type, TNM stage,
SEER code (CS extension, CS mets at dx, regional nodes examined, regional nodes positive, lung–
pleural/elastic layer invasion by H and E or elastic stain, lung–separate tumor nodules–ipsilateral lung,
lung–surgery to primary site]), and treatment details (surgical type).19,20 Patients were excluded if
any of the included clinical characteristics status were unknown or missing. The outcome of interest
in this study included LCSS according to specific codes provided by SEER (defined as the interval
from surgery until death as a result of lung cancer). These patients were randomly divided into the
training and validation cohort at a ratio of 8 to 2. To validate the DeepSurv model, an external test
cohort was provided by the CHINA database. The cohort comprised 1182 patients with stage I to III
NSCLC diagnosed between January 2009 and December 2013 in Shanghai Pulmonary Hospital,
which are completely distinct from the patients in SEER database. This study followed the
Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting guideline.

Deep Learning Model Design
In this study, DeepSurv was used to analyze patient-individual survival outcomes, which is a deep
learning algorithm that can predict individual survival risk values (Figure 1).18 We use deep feed-
forward neural network and the Cox proportional hazards model in survival analysis. The DeepSurv
model contained a core hierarchical structure with fully connected feed-forward neural networks
with a single output node to calculate the survival risks hθ(xi) of patients using the negative
log-partial likelihood function. More details about the DeepSurv were described in the eMethods in
the Supplement. Using the provided data set, we compared the performances of the TNM staging
model and our deep learning model with respect to 2 tasks (LCSS predictions) with 3 different data
sets (Figure 1).

Data Analysis
First, we developed a 6-layer neural network for predicting patient LCSS in the NSCLC training data
set (n = 12 912). To validate the prediction performance, we used Harrell C statistic and calibration
plots to evaluate the network discrimination and calibration in the NSCLC validation data set
(n = 3228) and CHINA data set (n = 1182).

Next, we trained a personalized treatment recommendation system using separately developed
lobar and sublobar resection risk prediction models with a 3-layer neural network in the lobectomy
(n = 10 766) and sublobectomy (n = 1444) training data sets. For each patient in the lobectomy and
sublobectomy validation data set (SEER: n = 3064; CHINA: n = 1142), we chose the lower-risk value
of the model’s treatment as the recommendation.

Finally, we categorized the patients into 2 groups according to the consistency of the treatment
received and recommended. For survival analysis, we used the Kaplan-Meier method to analyze LCSS
between different groups and the log-rank test to compare survival curves.

An additional Cox proportional hazard regression model with nonneural network methods6,17

was performed following the simple backward-stepwise approach using all the variables included in
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the DeepSurv model. It estimated the risk function h(xi) of the event occurring (LCSS) for patient i
based on included features xi using a linear function: h(Xi) = ! xiβi (β = the coefficient of xi).

Model Visualization
We also developed a user-friendly interface to facilitate the survival predictions and treatment
recommendations of the DeepSurv model. This interface consists of 3 views: (1) the user input view,
(2) the survival prediction view, and (3) the treatment recommendation view. The user input view
is designed to help users input all entries regarding patient characteristics using the XML schema
constructed based on the features input into DeepSurv models. The user input view allows users to
predict the survival probability and obtain a treatment recommendation based on specific patient
information by clicking the predict and recommendation buttons, respectively. All SEER codes
followed the SEER guideline.21

Statistical Analysis
A 2-sided P value less than .05 was considered to be statistically significant. The Akaike information
criterion was calculated to assess the risk of overfitting. The likelihood-based method was applied to
the type I censoring design.22 All statistical analyses were performed with SPSS version 23 (IBM
Corporation) software. The C statistic was performed by comparing C package with R statistical
software (R Project for Statistical Computing), and the survival curves were plotted using GraphPad
Prism 7 (GraphPad Software) software. Codes in our study are available online
(https://github.com/thoraciclang/Deep_Lung).23 Analysis began January 2018 and ended June 2019.

Figure 1. Diagram of the Study Procedure
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Deep learning networks were trained end to end on 3 data set groups. The training and
testing of these networks were all conducted on independent data sets. Four further
experiments were conducted on the networks to test their performances against tumor,

node, and metastasis (TNM) models, assess their degrees of stability, formulate
recommendations, and finally, accomplish model visualization. SEER indicates
Surveillance, Epidemiology, and End Results.
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Results

Screening Process and Clinicopathology
A total of 17 322 patients with NSCLC were included in the study. According to the screening criteria,
a total of 16 140 patients diagnosed as having NSCLC from the SEER database were included
(eFigure 1A in the Supplement). Table 1 shows the patients’ main baseline clinical characteristics
(eTables 2 and 3 in the Supplement). The majority of patients were white (13 361 [82.8%]), and the
median (interquartile range) age was 68 (61-74) years. The majority of tumors were stage I disease
(9327 [57.8%]) and adenocarcinoma (11 037 [68.4%]). The median (interquartile range) follow-up
time was 24 (10-43) months. There were 2893 patients (17.9%) who had events (deaths from NSCLC)
during the follow-up time. There were 1182 patients diagnosed with NSCLC from CHINA database
(eFigure 1B in the Supplement). There were 226 events (deaths from NSCLC) over a median
(interquartile range) follow-up time of 63.3 (53-70) months.

Table 1. Main Characteristics of Patients in the Whole Data Sets of Survival Analysis

Characteristica
Data set, No. (%)

Training SEER (test 1) CHINA (test 2)
Age at diagnosis, median (range), y 68 (28-95) 68 (19-92) 60 (30-87)

Sex

Female 6657 (51.6) 1639 (50.8) 642 (54.3)

Male 6255 (48.4) 1589 (49.2) 540 (45.7)

Histologic type

Adenocarcinoma 8794 (68.1) 2243 (69.5) 948 (80.2)

Squamous cell carcinoma 4118 (31.9) 985 (30.5) 234 (19.8)

Marital status at diagnosis

Unmarried 5304 (41.1) 1843 (57.1) 526 (44.5)

Married 7608 (58.9) 1385 (42.9) 656 (55.5)

T

T1a 563 (4.4) 139 (4.3) 128 (10.8)

T1b 3156 (24.4) 804 (24.9) 396 (33.5)

T1c 2342 (18.1) 641 (19.9) 346 (29.3)

T2a 3258 (25.2) 791 (24.5) 208 (17.6)

T2b 594 (4.6) 141 (4.4) 56 (4.7)

T3 1994 (15.4) 445 (13.8) 40 (3.4)

T4 1005 (7.8) 267 (8.3) 8 (0.7)

N

N0 9712 (75.2) 2439 (75.6) 1030 (87.1)

N1 1732 (13.4) 418 (12.9) 54 (4.6)

N2 1422 (11) 356 (11) 98 (8.3)

N3 46 (0.4) 15 (0.5) 0

M

M0 12 559 (97.3) 3132 (97) 1182 (100)

M1a 143 (1.1) 41 (1.3) 0

M1b 202 (1.6) 52 (1.6) 0

M1c 8 (0.1) 3 (0.1) 0

LCCS

Alive 10 581 (81.9) 2666 (82.6) 956 (80.9)

Dead 2331 (18.1) 562 (17.4) 226 (19.1)

Surgery to primary site

Pneumonectomy 613 (4.7) 132 (4.1) 40 (3.4)

Lobectomy 10 766 (83.4) 2695 (83.5) 872 (73.8)

Sublobar 1444 (11.2) 369 (11.4) 270 (22.8)

None 89 (0.7) 32 (1.0) 0

Abbreviations: LCCS, lung cancer–specific survival; M,
metastasis; N, node; SEER, Surveillance, Epidemiology,
and End Results cancer registry; T, tumor.
a Other detailed clinical characteristics can be found in

eTables 2 and 3 in the Supplement.
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Training Curves
eFigure 2 in the Supplement demonstrated the training curves of networks in 3 submodels. The
accuracy during the training course was indicated by validation and training lines. The curve was
plotted to monitor the training course as the weights of the network were adjusted over each epoch,
which represented the algorithm runs through the entire training and test data sets. After fine tuning,
the change trend of loss and accuracy tended to become smoother and the algorithm maintained
high accuracy on the validation set without significant overfitting. With a 500-epoch limit, we chose
the model with the best performance on the test data set.

Calibration and Validation of the Prognostic DeepSurv for LCSS in the Test Set
We compared the TNM staging model to DeepSurv for LCSS in the test data sets (Table 2). The
calibration plot indicated the calibration and how far the predictions of DeepSurv deviated from the
actual event (Figure 2). In general, the actual outcomes in our databases of all patients with NSCLC
for 3-year and 5-year LCSS were highly consistent with those predicted by the DeepSurv model, with
most points falling almost directly on the 45° line. The DeepSurv model generated significantly better
predictions than the TNM staging model (C statistic for TNM stage vs DeepSurv = 0.70; 95% CI,
0.681-0.731 vs 0.739; 95% CI, 0.713-0.764 [P < .001]). In the test group (CHINA data set), the
DeepSurv model (C statistic = 0.742; 95% CI, 0.709-0.775) showed significantly better prediction
than TNM model (C statistic = 0.706; 95% CI, 0.681-0.731; P < .001). High C statistic was observed
for the results of the lobectomy and sublobar resection test data sets (Table 2). The feature
component weightings in DeepSurv model are listed at eTable 4 in the Supplement.

The Cox proportional hazard regression model (eTable 5 in the Supplement) was compared with
the DeepSurv model for LCSS. The DeepSurv model had significantly better predictions compared
with the Cox proportional hazard regression model (C statistic for Cox proportional hazard regression
model vs DeepSurv model = 0.716; 95% CI, 0.705-0.727 vs 0.739; 95% CI, 0.713-0.764). The Akaike
information criterion value of TNM stage model, Cox proportional hazard regression model, and
DeepSurv model were 10741.89, 10307.08, and 10310.52, respectively.

Treatment Recommender
First, we plotted 2 Kaplan-Meier survival curves: the outcome of test cases whose actual treatments
were the same as those recommended and those whose were not (eFigure 3 in the Supplement).
The population that followed the recommendation experienced significantly better survival rates
than those who did not (SEER: hazard ratio [HR], 2.99; 95% CI, 2.49-3.59; P < .001 vs CHINA:
HR, 2.14; 95% CI, 1.65-2.77; P < .001). Furthermore, patients in the test data sets were classified into
lobectomy and sublobar resection groups according to the received treatment. Consistent with prior
analyses, LCSS favored lobectomy compared with sublobar resection in the subgroup with the
lobectomy recommendation (SEER: HR, 1.79; 95% CI, 1.28-2.50; P = .001 vs CHINA: HR, 1.92; 95%
CI, 1.30-2.83; P = .001). No significant distinction in survival results were observed for lobectomy and
sublobar resection in the subgroup with the sublobar resection recommendation (SEER: HR, 0.65;
95% CI, 0.41-1.02; P = .06 vs CHINA: HR, 0.75; 95% CI, 0.44-1.77; P = .28).

Table 2. Comparison of TNM Stage and DeepSurv Model for Survival Prediction in Test Data Sets

LCCS outcome Model C statistic (95% CI) P value
SEER TNM 0.706 (0.681-0.731) NA

DeepSurv 0.739 (0.713-0.764) <.001

CHINA TNM 0.691 (0.659-0.724) NA

DeepSurv 0.742 (0.709-0.775) <.001

Treatment DeepSurv (lobectomy, SEER) 0.725 (0.698-0.751) NA

DeepSurv (sublobar resection, SEER) 0.698 (0.672-0.725) NA

Abbreviations: LCCS, lung cancer-specific survival; NA,
not applicable; SEER, Surveillance, Epidemiology, and
End Results cancer registry; TNM, tumor, node, and
metastasis.
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Model Visualization
In the prediction view, the system invokes a prediction model (Figure 3; Video), and the DeepSurv
model is used to predict patients’ survival probability. The analysis results are visualized in a graphic
view as a survival curve, which indicates the survival probability of the patient input over time. In the
recommendation view, a recommendation model is adopted by the system, which can provide
different patient survival probabilities for different treatments (lobectomy or sublobar resection)
(Figure 3; Video). The survival curves of lobectomy and sublobar resection are also presented in a
graphic view to facilitate visual comparison.

Discussion
The results of our pilot study proved that the deep learning network model (DeepSurv) performed
better than conventional linear regression modeling (TNM staging model) in postoperative outcome
prediction for patients with newly diagnosed NSCLC. Also, this model may serve as a useful analytical
tool for treatment recommendation in patients with NSCLC, given its evidence of the significant
prognostic benefits of following the treatment recommendation, which clearly outweigh those
associated with not following the recommendation.

Previous studies have reported a series of linear models to predict the survival of patients with
lung cancer.24-27 However, few risk factors have been selected to these models, which is significantly
associated with the survival or recurrence. For example, Liang et al25 constructed a nomogram based
on 6 factors. On the other hand, our Cox analysis demonstrated the contribution of 16 factors in the

Figure 2. Calibration Plots for Lung Cancer–Specific Survival (LCCS) for the DeepSurv Model
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DeepSurv model. Obviously, a more comprehensive analysis could be performed by a nonlinear deep
learning model. After reviewing the most relevant advanced research, we found many studies to
have already applied deep learning models in their analytical approaches to surgical oncology
research.13 However, most studies have focused on diagnostic application,28-30 such as radiographic
image automated quantification,14,31-35 digital histopathology image interpretation,30,36-39 or
biomarker analysis.11,40 Examples of published research using deep learning models for prognostic
prediction in surgical oncology are rare, to our knowledge. In NSCLC research, the deep learning
technique has been applied to digital histopathology image interpretation, driver mutation risk
detection,40 and image characteristics discrimination,33,41 but only a few studies have focused on
postoperative outcome prediction or surgical recommendation, to our knowledge.

As a new analytic tool, the deep learning network model will likely become more widely applied
to support clinical decision-making.13 The performance of deep learning models in improving
treatment outcomes is a key question and requires solid validation in the real world. In an analysis of
1194 patients with NSCLC, Hosny et al14 evaluated the prognostic signatures of quantitative imaging
features, which were extracted using deep learning networks. Based on their study of the TNM
stages of postoperative patients, the authors’ main finding was that deep learning networks
significantly outperformed previous models. In our study, we selected a larger patient cohort with
NSCLC of unselected consecutive cases including I to IV stages for model training and testing, which
provide more solid results for interpretation. The advantages of the deep learning network model
for postoperative outcome prediction in surgical research can be summarized as follows.42,43 First,
DeepSurv shows improved adaptability to variables with a nonlinear association, which includes real-
world clinical factors. Unlike other models, deep learning algorithms can integrate the nonlinear risk
functions associated with outcomes. Second, DeepSurv possesses flexibility in dealing with complex
clinical factors. DeepSurv models cannot only automatically learn feature representations from
uninterpreted clinical data but also analyze censored factors. Also, the predictions of the DeepSurv
model have been proven to perform better in big data analysis. Owing to its ability to learn factor
representation, the advantages of the DeepSurv model in dealing with both large factors and sample
size may play a big role in biomedical marker analyses.44-46

It is a surgeon’s duty to introduce clinical information to patients. To facilitate discussion of
different potential surgical options, surgeons and patients need an informative tool that focuses on

Figure 3. User-Friendly Interface of DeepSurv Model, Which Facilitates Survival Prediction and Treatment Recommendation
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survival benefits. In real cases, the establishment of a user-friendly graphic interface based on a
patient communication framework will be key to effectively conveying results and illustrating
complex analyses, including prognostic prediction, treatment recommendation to patients and
family members, and improving the surgeons’ understanding of deep learning models.44,47 With its
fast application and convenient operation, the user-friendly graphic interface example established in
our study (Figure 3; Video) shows potential for use with any type of surgical care. To date, identifying
patients who are appropriate for initial surgical management and conveying individualized
prognostic analyses of postoperative outcomes has been an elusive goal. Instead, most published
models are guided by patient characteristics to generate prognostic factors and are influenced by
biases for different treatments.48 The DeepSurv model and its user-friendly graphic interface has the
potential to address this clinical dilemma and better share individual outcomes following different
surgical procedures.

Limitations
Since the innovation of deep learning models, many limitations have been recognized. First, deep
learning network models are computationally expensive to train and validate. The process of
predictions can be hard to interpret because the deep learning networks function much like black
boxes, which make it difficult to determine how the network arrives at its decisions. We also
recognize that single-clinical data sources have limited clinical characteristics compared with the
automated quantification of radiographic images. In this study, we examined 127 features of 21
characteristics in the model. Some important factors including preoperative elements were
neglected, which makes the recommendation system need more improvements and stay at
feasibility trial status. Also, external validation is lacking in this study. Further study is needed to
validate the advantages of deep learning networks in survival prediction.

Conclusions
To our knowledge, this study is the first to explore the performance of a deep learning network that
integrates Cox proportional hazards (DeepSurv) in NSCLC and to obtain promising results in outcome
prediction. In addition, we demonstrated DeepSurv’s potential to provide personalized treatment
recommendations based on real clinical data.
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