Supplementary Online Content

Khera R, Haimovich J, Hurley NC, et al. Use of machine learning models to predict death after acute myocardial infarction. *JAMA Cardiol.* Published online March 10, 2021. doi:10.1001/jamacardio.2021.0122

eMethods. Supplementary Methods

eTable 1. Differences in Characteristics of Patients Excluded vs Included in the Analyses **eTable 2.** List of Patient Variables Used in Modeling

eTable 3. Shift Table Representing Actual Observed Event Rates for Pairs of Models **eTable 4.** Shift Tables for Sensitivity Analysis With Risk Thresholds for Shift Tables Set at Risk <1.5%, 1.5-3%, >3%, Each Model Trained With Expanded Variables From the Chest Pain-MI Registry

eTable 5. Area Under the Receiver Operator Characteristic Curve for the 5-Fold Multiple Imputation

eTable 6. Model Calibration Slopes in Patient Subgroups

eFigure 1. Derivation of Brier Score Components Based on Calibration Curve

eFigure 2. Receiver Operator Characteristic for Logistic Regression, Neural Network (NN), XGBoost, and Meta-Classifier Models, Developed Using Variables Included in the Current

Model for In-hospital Mortality by McNamara et al

eFigure 3. Precision-Recall Curves for Logistic Regression, Neural Network (NN), XGBoost, and Meta-Classifier Models, Developed Using Variables Included in the Current Model for Inhospital Mortality by McNamara et al

eFigure 4. Receiver Operator Characteristic for Logistic Regression, Neural Network (NN), XGBoost, and Meta-Classifier Models, Developed Using the Expanded Set of Variables in the Chest Pain-MI Registry

eFigure 5. Precision-Recall Curves for Logistic Regression, Neural Network (NN), XGBoost, and Meta-Classifier Models, Developed Using the Expanded Set of Variables in the Chest Pain-MI Registry

eFigure 6. Mean Squared Prediction Error of Machine Learning Models Compared With Logistic Regression

eFigure 7. Calibration of Models Developed Using Limited Number of Variables Included in the Current Standard (McNamara et al)

eFigure 8. Calibration of Models Developed Using Expanded Number of Variables Included in the Chest Pain-MI Registry

This supplementary material has been provided by the authors to give readers additional information about their work.

eMethods. Supplementary Methods

Mean squared prediction error

To calculate the prediction error, we created a Bernoulli distribution using the probability of the inverse logit of the prediction at an individual-level, so that a prediction for an individual is either 0 or 1, and we compared the actual value of 0 or 1. A root mean square of this prediction across all patients was reported as the mean squared prediction error.

Measures of calibration

We also calculate the F-score, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV). The F-score is the harmonic mean of the sensitivity and PPV at a certain risk threshold, which classifies an individual risk estimate as either a death (if above the threshold) or no death (if below the threshold). Once a risk threshold is set, the number of true positives, false positives, true negatives, and false negatives can be calculated and used to derive sensitivity, specificity, PPV, and NPV. Here, the risk threshold associated with the highest F-score was selected as the overall risk-threshold for the method, and used to determine the sensitivity, specificity, PPV, and NPV for the overall model. The risk threshold is therefore determined using a data-driven approach and optimized for each model. The F-score is the harmonic mean of the sensitivity and PPV at a certain risk threshold, which classifies an individual risk estimate as either a death (if above the threshold) or no death (if below the threshold).

	Excluded patient 191,195)	Excluded patients (N = 191,195)		s (N =
	Mean (SD) or N (%)	Missing	Mean (SD) or N (%)	Missing
Demographics				
Age, years	64.4 (13.7)	0	64.6 (13.7)	0
Weight, kg	86.5 (22.3)	566	87.0 (22.1)	1421
Female	66,349 (34.7%)	0	260,200 (34.4%)	0
Race white	161,417 (84.4%)	0	640,995 (84.9%)	0
Race black	21,612 (11.3%)	0	87,089 (11.5%)	0
Medical History				
History of diabetes mellitus	64,869 (34.0%)	392	257,072 (34.0%)	144
History of hypertension	141,071 (73.9%)	257	562,423 (74.5%)	74
History of dyslipidemia	189 (78.1%)	190953	461,269 (61.1%)	127
Current/recent smoker	64,963 (34.0%)	246	253,829 (33.6%)	145
Current dialysis	29 (27.4%)	191089	68,086 (14.4%)	283305
History of MI	5,176 (2.7%)	603	19,055 (2.5%)	244
History of HF	60 (38.7%)	191040	188,297 (24.9%)	175
Prior PCI	57 (40.1%)	191053	94,897 (12.6%)	704
Prior CABG	-	191195	193,179 (25.6%)	0
History of atrial fibrillation	54 (36.2%)	191046	100,897 (13.4%)	393
Prior cerebrovascular disease	38 (24.5%)	191040	62,312 (8.3%)	519
Prior peripheral arterial disease	20,293 (10.6%)	372	91,723 (12.1%)	148
Presentation				
Presentation after cardiac arrest	8,499 (4.5%)	2047	29,458 (3.9%)	2581
In cardiogenic shock	8,180 (4.3%)	384	28,783 (3.8%)	584
In HF	22,569 (11.8%)	306	95,240 (12.6%)	529
Heart rate	84.1 (24.3)	1089	84.0 (23.9)	2216
SBP at presentation	145.7 (35.8)	1166	146.5 (35.2)	2678
Presentation ECG				

eTable 1. Differences in Characteristics of Patients Excluded vs Included in the Analyses

STEMI	85,634 (44.8%)	0	292,784 (38.8%)	0
New or presumed new ST-depressions	16,772 (8.8%)	0	83,555 (11.1%)	0
New or presumed new T-wave inversions	11,078 (5.8%)	0	56,791 (7.5%)	0
Transient ST-segment elevation lasting < 20	1,920 (1.0%)	0	8,279 (1.1%)	0
min				
Initial laboratory values				
Troponin Ratio	7.8 (8.3)	4088	7.3 (8.1)	12071
Creatinine, mg/dl	1.3 (1.2)	1098	1.3 (1.2)	4404
Creatinine clearance, ml/min	85.4 (42.9)	1634	85.2 (42.5)	5756
Hemoglobin, g/dl	13.7 (2.2)	1141	13.8 (2.2)	4426
Outcome				
In-hospital Mortality	9432 (4.9%)	0	33,468 (4.4%)	0

	Model Variables
Domographico	Age*
Demographics	
	Weight, kg*
	BMI kg/m ²
	Sex*
	Race (White, Black, Asian, American Indian, Native
	Hawaiian)
	Hispanic origin
Medical History	History of diabetes mellitus*
	Diabetes control
	History of hypertension*
	History of dyslipidemia*
	Current/recent smoker*
	Current dialysis*
	Chronic lung disease*
	History of MI*
	History of heart failure*
	Prior PCI*
	Prior CABG*
	History of atrial fibrillation*
	Prior cerebrovascular disease*
	Prior peripheral artery disease*
	Prior stroke
	Prior transient ischemic attack
Presentation	After Cardiac Arrest*
	In Cardiogenic shock*
	In heart failure*
	Heart rate, bpm*
	SBP, mmHg*
Presentation ECG	ST-elevation myocardial infarction*
	New or presumed new ST-segment depression*
	New or presumed new T-wave inversion*
	Transient ST-segment elevation < 20 minutes*
	ST elevation
	Left bundle branch block
	Isolated posterior MI
Home Medications	Aspirin
	Clopidogrel
	ACE inhibitor
	Angiotensin receptor blocker
	Beta blocker
	Statin
	Non-statin lipid-lowering agent
	Prasugrel

eTable 2. List of Patient Variables Used in Modeling

	Warfarin
	Aldosterone blocking agent
Initial Laboratory	Initial CKMB collected
Tests	Initial Troponin collected
	Initial Creatinine collected
	Initial Hemoglobin collected
	Lipid panel collected
	Initial BNP collected
	Initial pro-BNP collected
	Troponin Ratio*
	Creatinine mg/dL*
	Creatinine Clearance*
	Hemoglobin, g/dL*

*denotes model variables used in McNamara et al. study.⁹ Creatinine clearance calculated via Cockgroft-Gault equation.

eTable 3. Shift Table Representing Actual Observed Event Rates for Pairs of Models

	McNamara LR				
	<1%	1-5%	>5%	All	
McNamara	N Patients	N Patients	N Patients	N Patients	
XGB	Observed Rate	Observed Rate	Observed Rate	Observed Rate	
<1%	68,818	25,228	179	94,225	
<1 <i>7</i> 0	0.33%	0.80%	0.00%	0.46%	
1-5%	5,577	51,584	6,760	63,921	
1-576	1.42%	2.47%	4.87%	2.63%	
>5%	135	4,809	27,394	32,338	
~5%	2.22%	6.09%	20.81%	18.54%	
A 11	74,530	81,621	34,333	190,484	
All	0.42%	2.16%	17.56%	4.26%	

3A: Logistic regression (LR) vs extreme gradient descent boosting (XGB), both trained with limited variables used by McNamara et al.

<u>3B: Logistic regression (LR) vs Neural Network (NN), both trained with limited</u> variables used by McNamara et al.

	McNamara LR				
	<1%	1-5%	>5%	All	
McNamara	N Patients	N Patients	N Patients	N Patients	
NN	Observed Rate	Observed Rate	Observed Rate	Observed Rate	
<1%	72,909	30,143	31	103,083	
< 1 70	0.40%	1.13%	9.68%	0.62%	
1-5%	1,596	48,772	7,009	57,377	
1-570	1.13%	2.59%	6.38%	3.02%	
>5%	25	2,706	27,293	30,024	
~5 70	0.00%	5.95%	20.44%	19.12%	
A 11	74,530	81,621	34,333	190,484	
All	0.42%	2.16%	17.56%	4.26%	

<u>3C: Logistic regression (LR) vs XGBoost (XGB), both trained with expanded variables from the Chest pain-MI registry.</u>

Expanded LR				
<1% 1-5% >5% All				
N Patients	N Patients	N Patients	N Patients	

Expanded XGB	Observed Rate	Observed Rate	Observed Rate	Observed Rate
<1%	65,193	31,971	422	97,586
<170	0.27%	0.65%	1.18%	0.40%
1-5%	3,384	44,486	13,155	61,025
1-576	0.95%	2.21%	3.91%	2.51%
>5%	68	2,899	28,906	31,873
~5 %	2.94%	6.21%	20.79%	19.42%
All	68,645	79,356	42,483	190,484
	0.30%	1.73%	15.37%	4.26%

<u>3D: Logistic regression (LR) vs Neural Network (NN), both trained with expanded variables from the Chest pain-MI registry.</u>

	Expanded LR				
	<1%	1-5%	>5%	All	
Expanded	N Patients	N Patients	N Patients	N Patients	
NN	Observed Rate	Observed Rate	Observed Rate	Observed Rate	
<1%	63,271	18,909	91	82,271	
< 1 70	0.27%	0.67%	4.40%	0.37%	
1-5%	5,349	53,097	7,307	65,753	
1-576	0.67%	1.79%	4.83%	2.04%	
>5%	25	7,350	35,085	42,460	
~570	0.00%	4.00%	17.59%	15.23%	
All	68,645	79,356	42,483	190,484	
All	0.30%	1.73%	15.37%	4.26%	

	McNamara LR				
	<1%	1-5%	>5%	All	
Expanded	N Patients	N Patients	N Patients	N Patients	
LR	Observed Rate	Observed Rate	Observed Rate	Observed Rate	
<1%	62,341	6,303	1	68,645	
~ 1 <i>7</i> 0	0.28%	0.48%	0.00%	0.30%	
1-5%	12,029	63,489	3,838	79,356	
1-570	0.96%	1.69%	4.77%	1.73%	
>5%	160	11,829	30,494	42,483	
~5 %	11.88%	5.60%	19.17%	15.37%	
All	74,530	81,621	34,333	190,484	
	0.42%	2.16%	17.56%	4.26%	

3E: Logistic regression (LR) trained with limited variables vs LR trained with expanded variables from the Chest pain-MI registry.

<u>3F: Logistic regression (LR) trained with limited variables vs XgBoost (XgB)</u> trained with expanded variables from the Chest pain-MI registry.

	McNamara LR				
	<1%	1-5%	>5%	All	
Expanded	N Patients	N Patients	N Patients	N Patients	
XGB	Observed Rate	Observed Rate	Observed Rate	Observed Rate	
<1%	67,202	30,104	280	97,586	
<170	0.29%	0.62%	2.14%	0.40%	
1-5%	7,050	45,152	8,823	61,025	
1-576	1.38%	2.36%	4.17%	2.51%	
>5%	278	6,365	25,230	31,873	
-570	7.19%	8.09%	22.42%	19.42%	
All	74,530	81,621	34,333	190,484	
	0.42%	2.16%	17.56%	4.26%	

	McNamara LR				
	<1%	1-5%	>5%	All	
Expanded	N Patients	N Patients	N Patients	N Patients	
NN	Observed Rate	Observed Rate	Observed Rate	Observed Rate	
<1%	66,541	15,688	42	82,271	
< 1 <i>7</i> 0	0.31%	0.60%	0.00%	0.37%	
1-5%	7,892	54,195	3,666	65,753	
1-570	1.25%	1.94%	5.21%	2.04%	
>5%	97	11,738	30,625	42,460	
~570	4.12%	5.31%	19.07%	15.23%	
All	74,530	81,621	34,333	190,484	
	0.42%	2.16%	17.56%	4.26%	

<u>3G: Logistic regression (LR) trained with limited variables vs Neural Network (NN)</u> trained with expanded variables from the Chest pain-MI registry.

<u>3H: Logistic regression (LR) trained with limited variables vs Meta classifier</u> model (Meta) trained with expanded variables from the Chest pain-MI registry.

	McNamara LR			
	<1%	1-5%	>5%	All
Expanded	N Patients	N Patients	N Patients	N Patients
Meta	Observed Rate	Observed Rate	Observed Rate	Observed Rate
<1%	67,974	28,428	128	96,530
	0.29%	0.62%	0.00%	0.39%
1-5%	6,387	45,122	6,180	57,689
	1.49%	2.24%	3.87%	2.33%
>5%	169	8,071	28,025	36,265
	9.47%	7.19%	20.66%	17.61%
All	74,530	81,621	34,333	190,484
	0.42%	2.16%	17.56%	4.26%

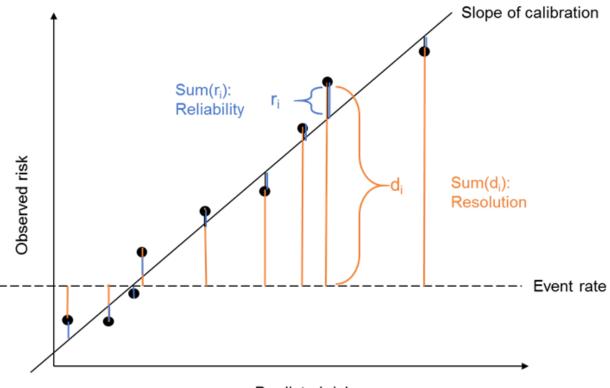
Three categories of predicted risk based on the logistic regression are compared against the predicted risk for the same patients using XGBoost model, neural network, and the meta-classifier (bottom third), further stratified based on the variables used to train the model (variables in the model by McNamara et al vs the expanded variable set). Event rate is reported as a percentage for each cohort, and the cohort size is shown in parentheses.

eTable 4. Shift Tables for Sensitivity Analysis With Risk Thresholds for Shift Tables Set at Risk <1.5%, 1.5-3%, >3%, Each Model Trained With Expanded Variables From the Chest Pain-MI Registry

XGBoost vs Logistic Regression					
	Expanded LR				
	<1.5%	1.5-3%	>3%	All	
Expanded	Patients, N	Patients, N	Patients, N	Patients, N	
XGBoost	Observed rate	Observed rate	Observed rate	Observed rate	
<1.5%	87,507	22,235	5,779	115,521	
\$1.5%	0.36%	0.94%	1.32%	0.52%	
4 5 20/	3,085	10,828	13,417	27,330	
1.5-3%	1.78%	2.19%	2.83%	2.46%	
>3%	577	2,806	44,250	47,633	
	2.95%	3.56%	15.18%	14.35%	
A II	91,169	35,869	63,446	190,484	
All	0.42%	1.52%	11.31%	4.26%	

Meta-classifier vs Logistic Regression					
	Expanded LR				
	<1.5%	>3%	All		
Expanded	Patients, N	Patients, N	Patients, N	Patients, N	
Meta	Observed rate	Observed rate	Observed rate	Observed rate	
<1.5%	88,360	22,698	4,680	115,738	
\$1.5%	0.37%	0.99%	1.15%	0.52%	
1 5 20/	2,378	9,836	9,636	21,850	
1.5-3%	2.14%	2.09%	2.30%	2.19%	
>3%	431	3,335	49,130	52,896	
	3.02%	3.51%	14.04%	13.28%	
All	91,169	35,869	63,446	190,484	
All	0.42%	1.52%	11.31%	4.26%	

Neural Network vs Logistic Regression						
	Expanded LR					
	<1.5% 1.5-3% >3% All					

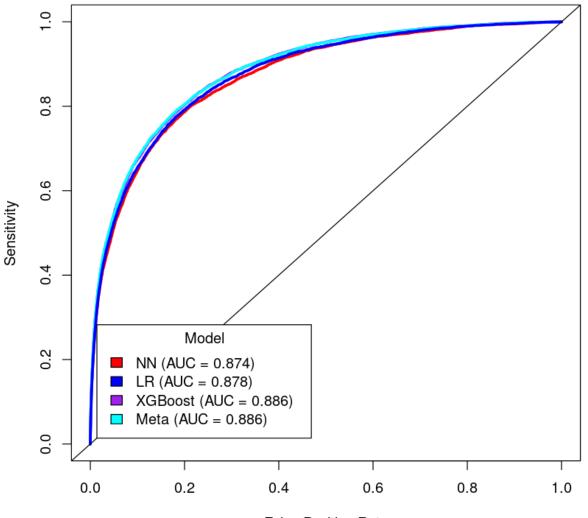

Expanded Neural Network	Patients, N Observed rate	Patients, N Observed rate	Patients, N Observed rate	Patients, N Observed rate
<1.5%	84,335	14,126	2,432	100,893
\$1.5%	0.37%	1.01%	2.38%	0.51%
1.5-3%	6,047	14,359	8,386	28,792
1.0-370	1.12%	1.73%	2.59%	1.85%
>3%	787	7,384	52,628	60,799
~3%	1.02%	2.11%	13.11%	11.62%
All	91,169	35,869	63,446	190,484
Ali	0.42%	1.52%	11.31%	4.26%

eTable 5. Area Under the Receiver Operator Characteristic Curve for the 5-Fold Multiple Imputation. Values in square brackets represents 95% confidence intervals.

Model	Models Constructed using Limited variables	Models Constructed using Expanded variables
Logistic Regression	0.877 [0.877-0.877]	0.888 [0.888-0.888]
Neural Network	0.874 [0.873-0.875]	0.886 [0.884-0.888]
XGBoost	0.885 [0.884-0.885]	0.897 [0.897-0.898]
Meta-classifier	0.885 [0.885-0.886]	0.898 [0.897-0.898]

Group	Logistic regression	Neural network	XGBoost	Metaclassifier
Overall	0.93 [0.91, 0.95]	0.83 [0.82, 0.85]	0.98 [0.96, 1.00]	0.99 [0.98, 1.00]
Age in years				
18-44	0.90 [0.87, 0.93]	0.81 [0.77, 0.84]	0.98 [0.95, 1.00]	0.97 [0.94, 1.00]
45-64	0.93 [0.92, 0.94]	0.83 [0.82, 0.85]	0.97 [0.96, 0.98]	0.98 [0.96, 1.00]
≥65	0.94 [0.91, 0.97]	0.83 [0.81, 0.86]	0.99 [0.96, 1.03]	1.00 [0.99, 1.01]
Sex				
Male	0.94 [0.92, 0.95]	0.84 [0.82, 0.85]	0.98 [0.97, 1.00]	0.99 [0.98, 1.01]
Female	0.92 [0.89, 0.95]	0.82 [0.80, 0.85]	0.97 [0.94, 1.00]	0.97 [0.96, 0.99]
Race/ethnicity				
White	0.93 [0.92, 0.95]	0.83 [0.82, 0.84]	0.98 [0.96, 1.00]	0.99 [0.97, 1.00]
Black	0.95 [0.89, 1.00]	0.86 [0.83, 0.90]	1.00 [0.94, 1.06]	1.01 [0.97, 1.04]

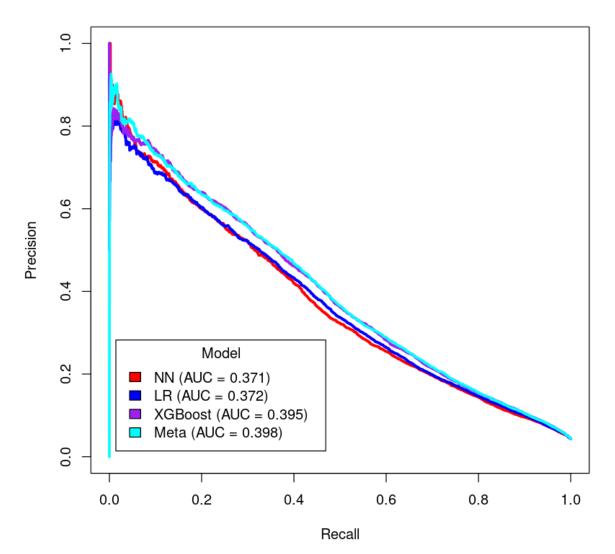
eTable 6. Model Calibration Slopes in Patient Subgroups


eFigure 1. Derivation of Brier Score Components Based on Calibration Curve

Predicted risk

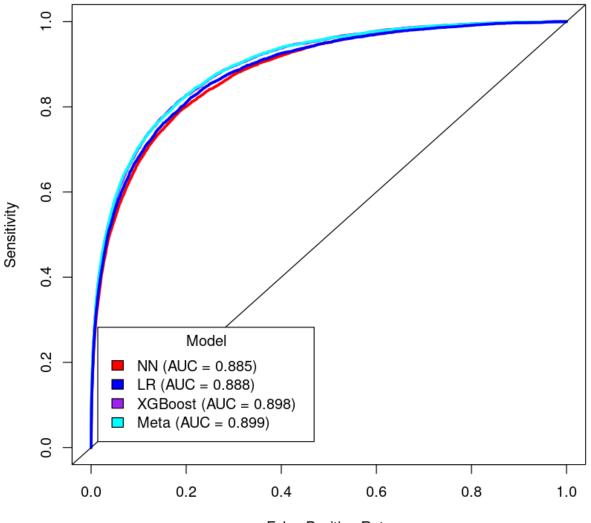
In the figure, each point represents the predicted versus Observed risk at a given decile of risk. Reliability is the sum of the mean-squared error between the deciles of predicted risk and Observed risk, and Resolution is the mean-squared error between deciles of predicted risk and the event rate of the entire cohort

eFigure 2. Receiver Operator Characteristic for Logistic Regression, Neural Network (NN), XGBoost, and Meta-Classifier Models, Developed Using Variables Included in the Current Model for In-hospital Mortality by McNamara et al


They plot the model sensitivity against the false positive rate across a range of all possible risk thresholds for deciding the binary mortality outcome. The black line shows the performance of an imperfect (random) classifier. Area under the curve (or c-statistic) for each model is shown in the legend.

Receiver Operator Characteristic Curves for McNamara Variable Set

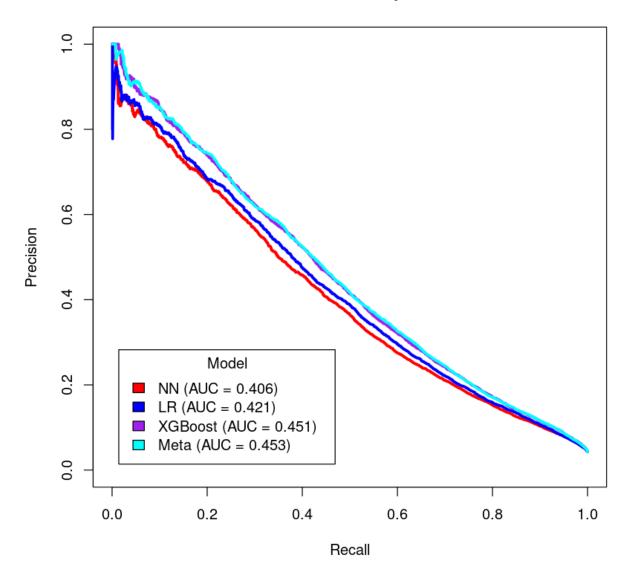
False Positive Rate


eFigure 3. Precision-Recall Curves for Logistic Regression, Neural Network (NN), XGBoost, and Meta-Classifier Models, Developed Using Variables Included in the Current Model for In-hospital Mortality by McNamara et al Models with precision-recall curves nearest to the top right-hand corner of the graph have the best performance. Area under the curve for each model is shown in the legend.

Precision Recall Curves for McNamara Variable Set

eFigure 4. Receiver Operator Characteristic for Logistic Regression, Neural Network (NN), XGBoost, and Meta-Classifier Models, Developed Using the Expanded Set of Variables in the Chest Pain-MI Registry

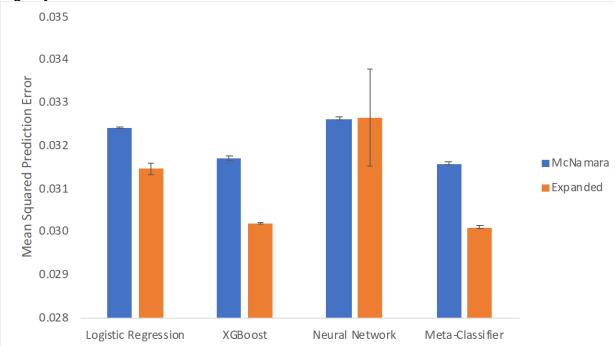
They plot the model sensitivity against the false positive rate across a range of all possible risk thresholds for deciding the binary mortality outcome. The black line shows the performance of an imperfect (random) classifier. Area under the curve (or c-statistic) for each model is shown in the legend.



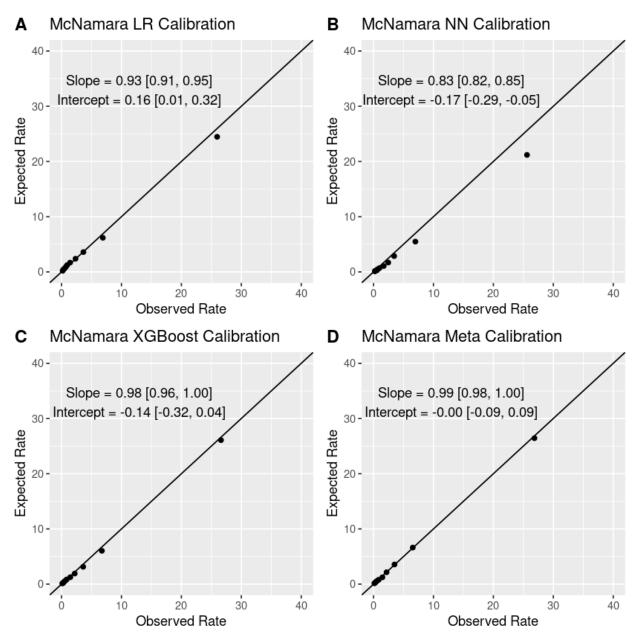
Receiver Operator Characteristic Curves for Expanded Variable Set

False Positive Rate

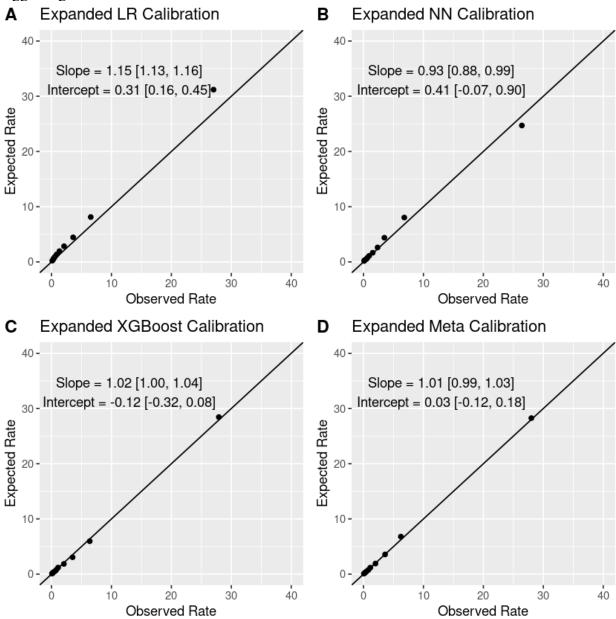
eFigure 5. Precision-Recall Curves for Logistic Regression, Neural Network (NN), XGBoost, and Meta-Classifier Models, Developed Using the Expanded Set of Variables in the Chest Pain-MI Registry


Models with precision-recall curves nearest to the top right-hand corner of the graph have the best performance. Area under the curve for each model is shown in the legend.

Precision Recall Curves for Expanded Variable Set


eFigure 6. Mean Squared Prediction Error of Machine Learning Models Compared With Logistic Regression

The mean squared prediction error for all machine learning models was lower than logistic regression applied to the same set of variables, including the variables used by the current standard (McNamara et al) and all variable available in the Chest pain-MI registry.


eFigure 7. Calibration of Models Developed Using Limited Number of Variables Included in the Current Standard (McNamara et al)

Calibration curves for logistic regression (LR, A), Neural Network (B), XGBoost (C) and Meta-Classifier (D) models for validation cohort predictions. Slope of 1 represents perfect model calibration with values greater than 1 suggesting overestimation of risk and less than 1 suggesting underestimation of risk.

eFigure 8. Calibration of Models Developed Using Expanded Number of Variables Included in the Chest Pain-MI Registry

Calibration curves for logistic regression (LR, A), Neural Network (B), XGBoost (C) and Meta-Classifier (D) models for validation cohort predictions. Slope of 1 represents perfect model calibration with values greater than 1 suggesting overestimation of risk and less than 1 suggesting underestimation of risk.

