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Abstract
Objectives: The aim of this study was to quantify the impact of predictor measurement heterogeneity on prediction model perfor-
mance. Predictor measurement heterogeneity refers to variation in the measurement of predictor(s) between the derivation of a prediction
model and its validation or application. It arises, for instance, when predictors are measured using different measurement instruments or
protocols.

Study Design and Setting: We examined the effects of various scenarios of predictor measurement heterogeneity in real-world clinical
examples using previously developed prediction models for diagnosis of ovarian cancer, mutation carriers for Lynch syndrome, and intra-
uterine pregnancy.

Results: Changing the measurement procedure of a predictor influenced the performance at validation of the prediction models
in nine clinical examples. Notably, it induced model miscalibration. The calibration intercept at validation ranged from �0.70 to
1.43 (0 for good calibration), whereas the calibration slope ranged from 0.50 to 1.67 (1 for good calibration). The difference in C-
statistic and scaled Brier score between derivation and validation ranged from �0.08 to þ0.08 and from �0.40 to þ0.16,
respectively.

Conclusion: This study illustrates that predictor measurement heterogeneity can influence the performance of a prediction model sub-
stantially, underlining that predictor measurements used in research settings should resemble clinical practice. Specification of measure-
ment heterogeneity can help researchers explaining discrepancies in predictive performance between derivation and validation
setting. � 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Clinical prediction models are commonly applied in
clinical practice to assist health care professionals in deter-
mining a patient’s diagnosis or prognosis [1]. Clinical pre-
diction models are applied to patients that were not part of
the data used to derive the model, often with the aim to es-
timate a probability for the presence of a disease or future
health state [2]. When applied on new patients, the perfor-
mance in estimating these probabilities is often different
from the performance in the derivation data. This is
commonly explained by model overfitting with respect to
the derivation data [3e6] and differences in patient
s article under the CC BY license (http://creativecommons.org/licenses/by/
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What is new?

Key findings
� Heterogeneity of predictor measurements across

settings of derivation and validation had a substan-
tial influence on predictive performance at valida-
tion, most notably on risk prediction model
calibration.

� Switching the measurement strategy of a predictor
within the derivation set minimally affected mea-
sures of discrimination and overall accuracy.

What this adds to what was known?
� Discrepancies in predictive performance between

derivation and validation setting are commonly ex-
plained by the specific modeling strategies (that
may result in overfitting) and by differences in
case-mix distribution across settings. Our study
identifies predictor measurement heterogeneity as
another substantive explanation of unanticipated
predictive performance at model validation or
implementation.

What is the implication and what should change
now?
� Our findings underline the importance of trans-

parent reporting of the predictor measurements that
are used for derivation and validation of a predic-
tion model.

� Our findings provide initial guidance on implemen-
tation of clinical prediction models. In a clinical
setting, predictors should be measured using pro-
cedures similar to those that were used for predic-
tor measurement in the derivation and validation
study to provide well-calibrated predictions of the
outcome of interest.

characteristics (case-mix) between derivation and valida-
tion settings [7e9].

Previous studies have identified imprecise predictor
measurement procedures as another reason for a suboptimal
performance of prediction models at derivation [10,11] and
highlighted that differences in predictor measurement pro-
cedures between derivation and validation setting substan-
tially affected performance at validation [12e14].
Predictor variables may be measured by different proced-
ures in external validation data than those applied in deriva-
tion data, that is, according to different measurement
protocols, measurement instruments, or by applying
different predictor definitions. We refer to these differences
in measurement across settings as predictor measurement
heterogeneity. Simulation studies have shown that predictor
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measurement heterogeneity can induce miscalibration of
prediction models and affect discrimination and accuracy
at external validation [12]. Although predictor measure-
ment heterogeneity across derivation and validation sam-
ples appears to be common in clinical (research) settings
(see, e.g., studies by Collins et al. [4], Te Velde et al.
[15], and Smith et al. [16]), its impact on the performance
of prediction models at validation is not well studied using
empirical data.

In this study, we quantify the impact of predictor mea-
surement heterogeneity on predictive performance in a se-
ries of real-world clinical examples.
2. Illustrating and defining predictor measurement
heterogeneity

We briefly illustrate predictor measurement heterogene-
ity here using measurements of the predictor body mass in-
dex (BMI). We fitted a logistic regression model to predict
the presence of prestage diabetes containing only two pa-
rameters for a linear and a quadratic term of BMI besides
the intercept (this example was adapted from the study by
Rosella et al. [11]). Data were available on 1,264 partici-
pants from the NHANES Study 2013e2014 [17]. BMI data
were computed from participants’ height and weight mea-
surements, obtained by a trained examiner who followed
a standardized protocol [18]. Because this measurement is
close to what we would consider the ideal method of mea-
surement, we will refer to it as the preferred measurement.
The second measurement of BMI was computed via self-
reported weight and height by the participants, which we
will refer to as the pragmatic measurement. The concept
predictor measurement heterogeneity refers to the phenom-
enon where the predictor measurement strategy at deriva-
tion differs from the measurement strategy at validation
or application of the prediction model.

A second regression model was fitted with a linear and
quadratic term for BMI using the pragmatic measurement
of BMI. Comparing the output of the two regression
models, it becomes clear that substituting the preferred
measurement of BMI with the pragmatic measurement
changed the distribution of the linear predictor (Fig. 1).
To better understand how substitution of pragmatic by
preferred measurements (and vice versa) can affect predic-
tive performance, we present empirical case studies in the
next sections.
3. Methods

We examined the effects of predictor measurement het-
erogeneity in previously established prediction models, us-
ing three empirical datasets on the diagnosis of ovarian
cancer, hereditary nonpolyposis colorectal cancer (CRC;
Lynch syndrome), and intrauterine pregnancy, respectively.



Fig. 1. Impact of predictor measurement heterogeneity on distribu-
tions of linear predictors. Density of the logit transformation of the
predicted risks (linear predictor) from a logistic regression model pre-
dicting the probability of a prestage of diabetes using the predictor
BMI. BMI was obtained as an instrumental (preferred) and self-
reported (pragmatic) measure. Distributions of the linear predictors
for both procedures are presented. The prediction model was
logitðPðYi 51jBMIiÞÞ5b0 þ b1BMIi þ b2BMI2i .
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Scenarios from various clinical domains were investigated
to provide a general assessment of the potential impact of
predictor measurement heterogeneity.
3.1. Example dataset 1: diagnosis of ovarian cancer

The International Ovarian Tumor Analysis (IOTA) data-
set includes clinical and ultrasound information on 5,914
nonpregnant women with at least one persistent adnexal
mass [19]. We used data from IOTA phases IeIII
(1999e2012) in which we studied two prediction models,
here referred to as Model 1 and Model 2. Model 1 is a lo-
gistic regression model that estimates the probability of
presence of ovarian mass malignancy from preoperatively
measured predictors: age (years), maximal diameter of
the tumor (mm), personal history of ovarian cancer (yes/
no), current use of hormonal therapy (yes/no), experience
of pain during examination (yes/no), presence of ascites
(yes/no), presence of blood flow within a solid papillary
projection (yes/no), maximal diameter of the largest solid
component (mm), presence of irregular cyst walls (yes/
no), presence of acoustic shadows (yes/no), color score of
intratumoral blood flow (ordinal, ranging 1e4), and pres-
ence of entirely solid tumors (yes/no). Model 1 is based
on the LR1 model, which was developed and internally
validated in IOTA phase-I data [20] and has been externally
validated several times [21e23]. Model 2 is a logistic
regression model to preoperatively diagnose ovarian mass
malignancy by age (years), the proportion of solid tissue,
the presence of more than 10 locules (yes/no), the number
of papillary structures, the presence of acoustic shadows
(yes/no), and the presence of ascites (yes/no). It is a previ-
ously described reduction of Model 1, developed for meth-
odological illustrations [24].

3.2. Example dataset 2: prediction of mutation carrier
status (Lynch syndrome)

We analyzed data from 19,866 patients with CRC, who
were tested for mutations in Lynch syndromeerelated
mismatch repair genes. We studied a simplification of the
PREMM1,2 model [25] and MMRpredict model [5,26] in
the Lynch syndrome dataset, which we refer to as Model
3. Model 3 is a logistic regression model that predicts the
prevalence of MLH1/MSH2 mutations from the following
predictors measured at baseline: sex, age at CRC diagnosis
(years), and family history of CRC and endometrial cancer.
Family history was defined as a weighted sum of positive
first- and second-degree relatives, where second-degree rel-
atives were weighted half times the first-degree relatives.
The sum ranged from 0 to 3, with family history coded
as 0, 1, or 2þ affected relatives.

3.3. Example dataset 3: prediction of intrauterine
pregnancy

We analyzed data from 75 consecutive patients at the
Early Pregnancy and Acute Gynecology Unit at Queen
Charlottes’ and Chelsea Hospital from November 2013 to
May 2014. We studied a logistic regression model in the
pregnancy data, here referred to as Model 4, that predicts
the probability of an ongoing intrauterine pregnancy based
on measurements of human chorionic gonadotropin (hCG)
level at presentation (pmol/L) and an hCG ratio of hCG at
48 hours after presentation to hCG at presentation. hCG
Levels could be measured using two different measurement
instruments, named the ‘‘ria kit’’ and the ‘‘imm kit.’’ Model
4 is adapted from an existing multinomial logistic regres-
sion model (named M4) [27] by grouping the outcome cat-
egories ‘‘ectopic pregnancy’’ and ‘‘pregnancy of unknown
location.’’

3.4. Models and assessment of predictive performance

To separate the impact of predictor measurement hetero-
geneity from other possible external validation effects on
predictive performance, such as changes in case-mix and
outcome incidence, we focus on derivation and validation
within the same study population and evaluate predictive
performance [28]. In each example, we defined scenarios
of measurement heterogeneity by identifying two measure-
ment procedures of a single predictor: a preferred measure-
ment and a pragmatic measurement (Table 1). The terms
‘‘preferred’’ and ‘‘pragmatic’’ are only meant in a relative



Table 1. Scenarios of measurement heterogeneity in four clinical prediction models

Scenario Dataset Model

Measurement heterogeneity

ExplanationPreferred procedure (scale) Pragmatic procedure (scale)

1 IOTA 1 Maximal diameter tumor
(continuous)

Mean diameter tumor
(continuous)

In the original model, the diameter of the
tumor was measured as the maximum of
three measurements of the tumor lesion in
different dimensions. Alternatively, the
mean of these three measurements could
be used as model input.

2 IOTA 1 Maximal diameter solid
component tumor,
nontruncated
(continuous)

Mean diameter solid
component tumor,
nontruncated
(continuous)

In the original model, the diameter of the
largest solid component of the tumor was
measured as the maximum of three
measurements of the solid component of
the tumor lesion in different dimensions.
Alternatively, the mean of these three
measurements could be used as model
input.

3 IOTA 1 Diameter solid component
truncated at 50 mm
(continuous)

Original diameter solid
component (continuous)

The diameter of the largest solid component
of the tumor was truncated at 50 mm in
the original model. In application of this
model, the truncation can be ignored or
forgotten.

4 IOTA 1 Color score (ordinal, 1e4) Color-score at extremes
(dichotomous, 1 or 4)

The intratumoral blood flow was scored by a
color score ranging 1e4 in the original
model. Alternatively, the extremes of this
score (1 or 4) could be used as model
input, because:

� A color score is a subjective measurement;
at model application, physicians could
score the colors at the extremes (either no
or high blood flow).

� Researchers could use a (public) dataset
for model validation in which only a binary
version of the score is available, rather
than a categorical score, and recode this
variable into scores 1 or 4.

5 IOTA 2 �10 locules (binary) �5 locules (binary) The original model included a dichotomized
version of the number of locules, where the
cutoff was at 10 locules. At model
validation or application, the cutoff value
for dichotomization could be different.

6 Lynch
syndrome

3 Family history CRC
summarized by counting
0, 1, 2 þ FDRs and 0, 1,
2 þ SDR, weighted by a
half (categorical, 0e3)

Family history CRC
summarized by counting
only FDRs (categorical, 0
e3)

Family history of CRC is computed as a
weighted count of diagnoses of CRC in
first- and second-degree relatives.
Possibly, the history of CRC is recorded for
first-degree relatives only and used as
model input.

7 Lynch
syndrome

3 Family history of EC
summarized by counting
0, 1, 2 þ FDRs and 0, 1,
2 þ SDR, weighted by a
half (categorical, 0e3)

Family history EC
summarized by counting
only FDRs (categorical, 0
e3)

Family history of EC is computed as a
weighted count of diagnoses of EC in first-
and second-degree relatives. Possibly, the
history of EC is recorded for first-degree
relatives only and used as model input.

8 Pregnancy 4 hCG level measured in
serum, using the ria kit
(continuous)

hCG level measured in
urine, using the ria kit
(continuous)

A hCG measurement is preferably obtained
from serum samples but could alternatively
be obtained from urine samples.

9 Pregnancy 4 hCG level measured in
serum, using the ria kit
(continuous)

hCG level measured in
serum, using the imm kit
(continuous)

A hCG measurement can be obtained using
different measurement kits, e.g., the ria kit
or imm kit.

Abbreviations: CRC, colorectal cancer; EC, endometrial cancer; FDR, first-degree relative; hCG, human chorionic gonadotropin; SDR, second-
degree relative.
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Table 2. Measures of optimism-corrected predictive performance under predictor measurement homogeneity

Scenario
Event
fraction Measurement strategy

Mean value
measurement

Standard
deviation

measurement C-statistic Scaled Brier score

1 0.33 Preferred Maximal diameter tumor 82.06 52.07 0.94 (0.94e0.95) 0.62 (0.60e0.64)

0.33 Pragmatic Mean diameter tumor 68.98 42.68 0.94 (0.94e0.95) 0.62 (0.60e0.65)

2 0.33 Preferred Maximal diameter solid
component tumor,
nontruncated

27.55 39.34 0.94 (0.93e0.95) 0.60 (0.58e0.62)

0.33 Pragmatic Mean diameter solid
component tumor,
nontruncated

22.73 32.71 0.94 (0.93e0.95) 0.60 (0.58e0.62)

3 0.33 Preferred Diameter solid component
truncated at 50 mm

18.91 21.31 0.94 (0.94e0.95) 0.62 (0.60e0.64)

0.33 Pragmatic Original diameter solid
component

27.55 39.34 0.94 (0.93e0.95) 0.60 (0.58e0.62)

4 0.33 Preferred Color score four categories 2.25 0.99 0.94 (0.94e0.95) 0.62 (0.60e0.64)

0.33 Pragmatic Color score dichotomous 2.20 1.47 0.94 (0.94e0.95) 0.61 (0.59e0.64)

5 0.33 Preferred �10 locules 0.08 0.27 0.89 (0.89e0.90) 0.46 (0.44e0.49)

0.33 Pragmatic �5 locules 0.19 0.40 0.90 (0.89e0.91) 0.47 (0.44e0.49)

6 0.10 Preferred Family history of CRC, both
FDR and SDR

0.64 0.76 0.78 (0.77e0.79) 0.16 (0.14e0.17)

0.10 Pragmatic Family history of CRC, FDR
only

0.45 0.66 0.77 (0.76e0.78) 0.14 (0.13e0.16)

7 0.10 Preferred Family history of EC, both
FDR and SDR

0.10 0.31 0.78 (0.77e0.79) 0.16 (0.14e0.17)

0.10 Pragmatic Family history of EC, FDR
only

0.07 0.28 0.78 (0.77e0.79) 0.16 (0.14e0.17)

8a 0.40 Preferred hCG level measured in
serum, ria kit

2.74 and
�0.23

1.44 and
0.86

0.90 (0.81e0.97) 0.54 (0.32e0.78)

0.40 Pragmatic hCG level measured in
urine, ria kit

4.32 and
�0.16

1.74 and
1.12

0.81 (0.70e0.91) 0.27 (0.05e0.52)

9a 0.40 Preferred hCG level measured in
serum, ria kit

2.74 and
�0.23

1.44 and
0.86

0.90 (0.81e0.97) 0.54 (0.31e0.78)

0.40 Pragmatic hCG level measured in
serum, imm kit

2.90 and
�0.27

1.41 and
0.84

0.91 (0.83e0.98) 0.56 (0.32e0.79)

Abbreviations: CRC, colorectal cancer; EC, endometrial cancer; FDR, first-degree relative; hCG, human chorionic gonadotropin; SDR, second-
degree relative.

Measures of predictive performance were averaged over 500 bootstrap samples and corrected for optimism. Confidence intervals for the C-sta-
tistic and scaled Brier score were obtained by subtracting the optimism from the 95-percentile interval over the 500 bootstrap estimates of the
performance measure under predictor measurement homogeneity. Scaled Brier score is computed as: 1eBrier/Briermax.

a The hCG measurements are included in the model as a log-transformed hCG measurement at presentation plus a log-transformed ratio of hCG
at 48 hours to hCG-at-presentation measurement.

11K. Luijken et al. / Journal of Clinical Epidemiology 119 (2020) 7e18
sense: a preferred measurement may still be far from the
ideal measurement of a particular phenomenon, but as a
predictor of a particular outcome, it could be preferable
over the pragmatic measurement in terms of a lower mea-
surement error or anticipated better predictive potential
for the particular outcome.

For each scenario, we assessed the optimism-corrected
predictive performance of a regular maximum likelihood
logistic regression model under both predictor measure-
ment homogeneity and heterogeneity. The optimism correc-
tion was performed because measures of predictive
performance based on the derivation data may give an
overoptimistic assessment of model performance, as
maximum likelihood models are generated to provide the
best fit for the derivation data [28]. Measures of predictive
performance were obtained by deriving and validating a
prediction model in 500 bootstrap samples and averaging
optimism-corrected measures of performance over the
bootstrap samples (see Supplementary Material 1 for
detailed explanation) [28]. To assess predictor measure-
ment homogeneity, the prediction model was derived and
validated based on the same predictor definitions. To assess
predictor measurement heterogeneity, a derivation and vali-
dation setting were recreated by deriving the model using



Table 3. Measures of predictive performance under predictor measurement heterogeneity

Scenario Measurement strategy at derivation Measurement strategy at validation rpart

1a Maximal diameter tumor Mean diameter tumor 0.98

1b Mean diameter tumor Maximal diameter tumor

2a Maximal diameter solid component tumor, nontruncated Mean diameter solid component tumor, nontruncated 0.98

2b Mean diameter solid component tumor, nontruncated Maximal diameter solid component tumor, nontruncated

3a Diameter solid component truncated at 50 mm Original diameter solid component 0.65

3b Original diameter solid component Diameter solid component truncated at 50 mm

4a Color score, four categories Color score dichotomous 0.81

4b Color score dichotomous Color score, four categories

5a �10 locules �5 locules 0.56

5b �5 locules �10 locules

6a Family history of CRC, both FDR and SDR Family history of CRC, FDR only 0.90

6b Family history of CRC, FDR only Family history of CRC, both FDR and SDR

7a Family history of EC, both FDR and SDR Family history of EC, FDR only 0.93

7b Family history of EC, FDR only Family history of EC, both FDR and SDR

8aa hCG level measured in serum, using the ria kit hCG level measured in urine, using the ria kit 0.61 and 0.92

8ba hCG level measured in urine, using the ria kit hCG level measured in serum, using the ria kit

9aa hCG level measured in serum, using the ria kit hCG level measured in serum, using the imm kit 0.98 and 0.997

9ba hCG level measured in serum, using the imm kit hCG level measured in serum, using the ria kit

Abbreviations: CRC, colorectal cancer; EC, endometrial cancer; FDR, first-degree relative; hCG, human chorionic gonadotropin; SDR, second-
degree relative.
Performance measures under predictor measurement heterogeneity: median calibration coefficients and mean difference scores of c-statistic
and scaled Brier score over 500 bootstrap samples with 95-percentile intervals. D indicates that the measure of predictive performance under
predictor measurement homogeneity is subtracted from the performance measure under predictor measurement heterogeneity. Scaled Brier
score is computed as: 1eBrier/Briermax.

a The hCG measurements are included in the model as a log-transformed hCG measurement at presentation plus a log-transformed ratio of hCG
at 48 hours to hCG-at-presentation measurement.
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the preferred measurement and validating the model using
the pragmatic measurement, denoted scenarios 1ae9a, or
by deriving the model using the pragmatic measurement
and validating the model using the preferred measurement,
denoted scenarios 1be9b. Note that we isolate the impact
of measurement heterogeneity here by keeping all other
factors besides measurement heterogeneity constant (i.e.,
the modeling strategy, the included predictors, and patient
characteristics are equal at derivation and validation).

Measures of predictive performance were the calibration-
in-the-large coefficient and calibration slope from a logistic
recalibration model, the C-statistic (area under the receiver
operating characteristic curve) and the Brier score. Model
calibration refers to the agreement between observed out-
comes and risk estimates [1,29]. The calibration-in-the-
large coefficient evaluates whether there is a difference be-
tween the observed event fraction and the average predicted
risk (0 for perfect calibration) and is estimated as the inter-
cept of the recalibration model while the calibration slope is
fixed at a value of 1. The calibration slope (!1 indicating
overfitting, i.e., predicted risks that are too extreme, and
O1 indicating underfitting) was computed by regressing
the observed outcome on the logit transformation of the pre-
dicted risks and evaluated graphically by plotting loess
calibration curves. We considered the scaled Brier score,
in which the Brier score is scaled by its maximum score un-
der a noninformative model, Brierscaled 5 1�Brier/Briermax

so that it ranges from 0 for perfect predictions to 1 for non-
informative predictions [1,29].

To quantify the resemblance between the predictor mea-
surement procedures, the partial correlation between the
preferred and pragmatic predictors was estimated by corre-
lating residuals of two linear regression models regressing
each of the predictor measurements on the outcome and
other covariates in the model. Shrunken regression coeffi-
cients from a Ridge logistic regression model were esti-
mated, for which the tuning parameter (necessary for
shrinkage) was determined by the value minimizing the
deviance in 10-fold cross-validation [30]. All analyses were
performed in R 3.5.1 [31], and R code is available at https://
doi.org/10.5281/zenodo.3571193. Measures of predictive
performance were obtained using the rms package [32].
4. Results

Measures of predictive performance in all scenarios are
presented in Table 2 (under measurement homogeneity) and

https://doi.org/10.5281/zenodo.3571193
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Calibration-in-the-large Calibration slope DC-statistic a100 D scaled brier score

0.06 (�0.02 to 0.15) 1.00 (0.95 to 1.05) 0.00 (�0.00 to 0.02) �0.00 (�0.00 to �0.00)

�0.09 (�0.19 to �0.00) 0.99 (0.93 to 1.03) �0.02 (�0.06 to 0.00) 0.00 (0.00 to 0.00)

0.13 (0.04 to 0.22) 1.03 (0.98 to 1.09) �0.00 (�0.00 to 0.00) �0.01 (�0.01 to �0.01)

�0.16 (�0.24 to �0.07) 0.94 (0.89 to 1.00) �0.00 (�0.00 to 0.00) 0.01 (0.00 to 0.01)

�0.44 (�0.50 to �0.37) 0.71 (0.65 to 0.75) �0.88 (�1.02 to �0.75) �0.02 (�0.03 to �0.02)

0.22 (0.11 to 0.32) 1.08 (1.03 to 1.14) �0.02 (�0.10 to 0.07) �0.02 (�0.02 to �0.01)

�0.12 (�0.19 to �0.05) 0.85 (0.80 to 0.89) �0.76 (�0.98 to �0.56) �0.03 (�0.04 to �0.02)

0.04 (�0.06 to 0.12) 1.04 (0.98 to 1.09) 0.10 (0.04 to 0.17) 0.00 (�0.00 to 0.00)

�0.21 (�0.29 to �0.11) 1.00 (0.95 to 1.06) 0.23 (0.14 to 0.31) 0.02 (0.01 to 0.02)

0.17 (0.09 to 0.25) 0.98 (0.93 to 1.03) �0.27 (�0.35 to �0.18) �0.03 (�0.04 to �0.03)

0.41 (0.31 to 0.51) 1.05 (1.00 to 1.10) �0.74 (�0.79 to �0.70) �0.24 (�0.26 to �0.22)

�0.41 (�0.50 to �0.31) 0.94 (0.90 to 0.99) 0.71 (0.67 to 0.76) 0.16 (0.15 to 0.17)

0.04 (�0.06 to 0.14) 1.00 (0.96 to 1.05) �0.13 (�0.15 to �0.12) �0.02 (�0.02 to �0.02)

�0.05 (�0.15 to 0.05) 0.99 (0.95 to 1.04) 0.12 (0.11 to 0.14) 0.02 (0.02 to 0.03)

�0.70 (�1.26 to �0.21) 0.50 (0.22 to 0.91) �7.97 (�10.80 to �6.59) �0.40 (�0.80 to �0.15)

1.43 (0.31 to 2.54) 1.67 (0.83 to 3.47) 8.34 (6.67 to 11.63) �0.12 (�0.72 to 0.17)

0.05 (�0.71 to 0.75) 1.01 (0.48 to 1.78) 1.31 (0.07 to 2.00) 0.00 (�0.01 to 0.03)

0.05 (�0.56 to 0.68) 0.86 (0.37 to 1.58) �1.36 (�2.02 to 0.00) �0.01 (�0.03 to 0.01)
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Table 3 (under measurement heterogeneity). The latter results
are presented graphically in Figures 2e4, for the IOTA data-
set, Lynch syndrome dataset, and pregnancy dataset, respec-
tively. Each scenario is discussed in detail in Supplementary
Material 2. Results after regression shrinkage (ridge regres-
sion, Supplementary Material 3) did not differ from results
without; we only discuss the latter here.
4.1. Predictive performance under measurement
homogeneity

Measures of predictive performance varied between
models. However, within scenarios, a switch in measure-
ment strategy for a single predictor did not materially
impact the predictive performance (Table 2), with the
exception of scenario 8, where the C-statistic and scaled
Brier score decreased when the pragmatic measurement
was used (pregnancy dataset, N 5 75).
4.2. Predictive performance under predictor
measurement heterogeneity

Table 3 shows estimates of predictive performance under
predictor measurement heterogeneity across the different
models. The calibration-in-the-large coefficient at valida-
tion ranged from �0.70 (95% confidence interval [CI]:
�1.26 to �0.21) to 1.43 (95% CI: 0.31e2.54), suggesting
systematic over- or under-estimation of the predicted risks.
The calibration slope at validation ranged from 0.50 (95%
CI: 0.22e0.91) to 1.67 (95% CI: 0.83e3.47), consistent
with overfitting (too extreme predictions) and underfitting
(too narrow range of predictions), respectively. The differ-
ences in C-statistic between derivation and validation were
small to moderate, ranging from �0.08 (95% CI: �0.11 to
�0.07) to þ0.08 (95% CI: 0.07e0.11). The change in the
scaled Brier score between derivation and validation ranged
from �0.40 (95% CI: �0.80 to �0.15) to þ0.16 (95% CI:
0.15e0.17). In what follows, we provide a detailed discus-
sion of predictive performance, where we group the sce-
narios by type of predictor measurement heterogeneity.

In settings where a different measure of aggregation for
defining the predictor was used (scenarios 1abe2ab), the
direction of miscalibration was related to the shift in aggre-
gational measure (Fig. 2). When the maximum tumor diam-
eter was used at derivation and the mean at validation, the
calibration-in-the-large coefficient was larger than zero,
indicating a systematic underestimation of the predicted
risks at validation (scenarios 1a and 2a). The reverse



Fig. 2. Measures of predictive performance under predictor measurement heterogeneity of a model predicting the probability of having ovarian
mass malignancy. The model is applied to the International Ovarian Tumor Analysis (IOTA) dataset, containing information on 5,914 nonpregnant
women (1999e2012). Error bars represent the 95-percentile interval over 500 bootstrap samples. Error bars with an asterisk (*) indicate scenarios
1ae5a, meaning the model was derived using the preferred measurement and validated using the pragmatic measurement, scenarios with a point
(�) indicate scenarios 1be5b, meaning the model was derived using the pragmatic measurement and validated using the preferred measurement.
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occurred in scenarios 1b and 2b. Calibration-in-the-large
was more strongly affected in scenario 2ab, where the
predictoreoutcome association was higher than in scenario
1ab.

Truncation of a continuous predictor measurement
showed the following effects on calibration (scenario 3ab;
Fig. 2). When the truncated value was used for model deri-
vation and the nontruncated value at validation, the
calibration-in-the-large coefficient indicated systematic
overestimation of the predicted risks at validation, and the
calibration slope was smaller than one, indicating overfit-
ting with respect to the derivation data; predicted risks were
too extreme compared with the observed proportions (and
vice versa in scenario 3b).
When the categories of an ordinal predictor were
collapsed into a binary variable by using only the extremes
of the scale (scenario 4a; Fig. 2), the calibration-in-the-
large coefficient indicated systematic overestimation of
the predicted risks, the calibration slope indicated overfit-
ting with respect to the derivation data, and the C-statistic
decreased (and vice versa in scenario 4b).

When a more stringent dichotomization was used at vali-
dation by shifting the cut-off of a count upward (scenario
5b; Fig. 2) or including only first-degree relatives in a sum-
mary score on family history, rather than both first- and
second-degree relatives (scenarios 6a and 7a; Fig. 3), risks
were systematically underestimated, as indicated by the
calibration-in-the-large coefficient (and vice versa in 5a,



Fig. 3. Measures of predictive performance under predictor measurement heterogeneity of a model predicting the probability of having Lynch
syndromeerelated mismatch repair genes. The model is applied to the Lynch syndrome dataset, containing information on 19,866 patients with
colorectal cancer who were tested for mutations. Error bars represent the 95-percentile interval over 500 bootstrap samples. Error bars with an
asterisk (*) indicate scenarios 6a and 7a, meaning the model was derived using the preferred measurement and validated using the pragmatic
measurement, scenarios with a point (�) indicate scenarios 6b and 7b, meaning the model was derived using the pragmatic measurement and
validated using the preferred measurement.
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6b, 7b). In scenario 6a, the calibration slope indicated
model underfitting, the C-statistic decreased, and the scaled
Brier score decreased (and vice versa in scenario 6b).
Fig. 4. Measures of predictive performance under predictor measurement he
nancy. The model is applied to the pregnancy dataset, containing informati
(EPAGU) at Queen Charlottes’ and Chelsea Hospital (2013e2014). Error b
Error bars with an asterisk (*) indicate scenarios 8a and 9a, meaning the mo
the pragmatic measurement, scenarios with a point (�) indicate scenarios 8
surement and validated using the preferred measurement.
Switching from serum to urine hCG measurements (sce-
nario 8ab) showed the following effects on predictive per-
formance (Fig. 4). When the predictor measurement had a
terogeneity of a model predicting the probability of intrauterine preg-
on on 75 patients at the Early Pregnancy and Acute Gynecology Unit
ars represent the 95-percentile interval over 500 bootstrap samples.
del was derived using the preferred measurement and validated using
b and 9b, meaning the model was derived using the pragmatic mea-
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smaller variance at derivation compared with validation
(scenario 8a), the calibration-in-the-large coefficient indi-
cated systematic overestimation of the predicted risks,
and the calibration slope indicated model overfitting. The
C-statistic and scaled Brier score decreased. The reverse
occurred when the predictor measurement had lower vari-
ance at validation compared with derivation (scenario 8b),
except for the scaled Brier score, which decreased again.

A switch in measurement instrument, that is, using the
ria kit vs. using the imm kit for hCG measurement in serum
(scenario 9ab; Fig. 4), minimally affected predictive perfor-
mance. The large uncertainty around measures of predictive
performance in scenario 8ab and 9ab can largely be ex-
plained by the limited sample size.
5. Discussion

In this study, we evaluated the impact of predictor mea-
surement heterogeneity in nine different scenarios in three
clinical datasets. A change in measurement strategy of a pre-
dictor within the derivation set, from preferredmeasurement
to pragmaticmeasurement or vice versa, minimally affected
measures of predictive performance in our example studies.
We found that heterogeneity ofmeasurements across settings
of derivation and validation can have a substantial impact on
the performance of a predictionmodel, most notably on over-
all accuracy and calibration of risk predictions, resulting in
systematic over- or under-estimation of predicted risks and
risk models that are consistent with overfitting (systemati-
cally too extreme predictions) or underfitting (systematically
a too narrow range of predictions).

In the examples, the impact on calibration was larger
when predictors were strongly associated with the outcome
or when the partial correlation between predictor measure-
ment strategies was lower. Using Ridge regression as a
shrinkage method or correcting for optimism did not
compensate for the effects of measurement heterogeneity
in our study. The variety of effects on predictive perfor-
mance in the examples illustrated the difficulty of antici-
pating the exact impact of predictor measurement
heterogeneity, emphasizing the need to be generally mind-
ful of (dis)similarities of predictor measurement strategies
between derivation and validation studies.

We observed small effects of predictor measurement
heterogeneity on the discriminatory power of the model
at validation in our examples. Previous simulation studies
found larger effects on the C-statistic [10e12]. Our finding
may be explained by the fact that we focused on within-
sample predictive performance under measurement hetero-
geneity in a single predictor. With a larger number of
predictors subject to measurement heterogeneity, we antic-
ipate the combined effect on the discrimination perfor-
mance can be larger. In addition, given that the C-statistic
is a rank order statistic, it is possible that this metric is less
affected by measurement heterogeneity [33].
Our findings showed that internal predictive perfor-
mance may not be affected by changes in predictor mea-
surement strategy within the same dataset, in line with
previous studies [10,11,34]. Previous research showed that
variations in measurement error did not affect risk calibra-
tion [10], but these findings were restricted to within-
sample effects on predictive performance only. Within the
derivation dataset, models derived using logistic regression
achieve, by definition, a calibration-in-the-large coefficient
of zero and calibration slope of one, regardless of the mea-
surement error structure of predictors [29]. Our study high-
lights that this does not apply when the degree or structure
of measurement error varies across settings of derivation
and validation, the case of measurement heterogeneity.

It is common practice in validation studies to quantify
the relatedness of derivation and validation samples by in-
specting the distribution of the linear predictors, also
referred to as comparison of case-mix distributions
[8,9,35]. Dissimilarities in the distributions of the linear
predictor between derivation and validation may rise from
both actual differences in patient characteristics and differ-
ences in the procedures used to measure patient character-
istics. By identifying predictor measurement heterogeneity
as a separate explanation of discrepancies in linear-
predictor distributions across settings, our findings can
facilitate the implementation of the influential TRIPOD
statement in clinical prediction research [36].

Our study has several limitations. First, it was limited to
three empirical datasets with a diagnostic outcome modeled
using logistic regression. One dataset, from the IOTA study,
was amulticenter study inwhich homogeneousmeasurement
strategies across centers was among its hallmark characteris-
tics [19]. Measurement heterogeneity within development
and validation studies, for example, because of variability
in measurement precision between clinicians or centers
[37], is an important topic for future research. Given the po-
tential impact and limited attention to date [38], research is
needed on the effect of measurement heterogeneity for other
statistical models and outcomes (e.g., survival models for
time-to-event outcomes) and the impact onmore flexible pre-
diction modeling strategies. Finally, the similarity between
the preferred and pragmatic measurement of a predictor
was quantified using a partial correlation coefficient. This
measure quantifies the conditional association between pre-
dictor measurements rather than agreement [39]. As the pre-
sent article aimed to examine whether variation in predictor
measurement strategies across settings can have an effect
on predictive performance of any degree or direction, we pre-
sented a single measurement of similarity of predictor mea-
surements and left out further quantification. One way to
visualize agreement between measurement could be
BlandeAltman plots [40].

The following recommendations follow from our work.
When a prediction model is derived, predictor measure-
ments should be clearly defined and ideally resemble pro-
cedures in the intended setting of application as closely
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as possible. For prediction model validation studies, we
encourage researchers to investigate to which extent predic-
tor measurement procedures are homogeneous and may
have contributed to differences in predictive performance
between the validation and derivation setting. Accurate re-
porting of predictor measurement heterogeneity in both
derivation and validation studies is, therefore, essential.
Furthermore, we take the position that addressing
measurement heterogeneity at the data collection stage is
preferred over statistical correction for measurement error
in predictors. Correctionsdtypically aiming to alleviate
measurement-error bias in regression coefficientsdmay
increase rather than reduce the measurement heterogeneity
[12].

We emphasize that consideration of predictor measure-
ment heterogeneity is crucial also in the implementation
stage of a prediction model in clinical practice. Deployment
of a predictionmodel might alter predictor measurement het-
erogeneity. For example, after the implementation of a pre-
diction model, physicians may be recommended to use a
more precise or standardizedmeasurement (or even routinely
measure predictors that were not measured in all patients up
to that point). For the implementation of predictionmodels in
clinical practice, our findings indicate that measurement pro-
cedures should follow the measurements in derivation and
validation datasets as closely as possible.

In summary, our findings highlight that predictor mea-
surement heterogeneity can have a substantial influence on
the performance of a prediction model, most notably on risk
calibration. Explicit reporting of the procedures and timing
involved in the measurement of predictors in derivation and
validation studies is vital to improve the performance and
applicability of prediction models in clinical practice.
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