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ABSTRACT

Objective: We aim to investigate the application and accuracy of artificial intelligence (AI) methods for auto-

mated medical literature screening for systematic reviews.

Materials and Methods: We systematically searched PubMed, Embase, and IEEE Xplore Digital Library to iden-

tify potentially relevant studies. We included studies in automated literature screening that reported study ques-

tion, source of dataset, and developed algorithm models for literature screening. The literature screening

results by human investigators were considered to be the reference standard. Quantitative synthesis of the ac-

curacy was conducted using a bivariate model.

Results: Eighty-six studies were included in our systematic review and 17 studies were further included for

meta-analysis. The combined recall, specificity, and precision were 0.928 [95% confidence interval (CI), 0.878–

0.958], 0.647 (95% CI, 0.442–0.809), and 0.200 (95% CI, 0.135–0.287) when achieving maximized recall, but were

0.708 (95% CI, 0.570–0.816), 0.921 (95% CI, 0.824–0.967), and 0.461 (95% CI, 0.375–0.549) when achieving maxi-

mized precision in the AI models. No significant difference was found in recall among subgroup analyses in-

cluding the algorithms, the number of screened literatures, and the fraction of included literatures.

Discussion and Conclusion: This systematic review and meta-analysis study showed that the recall is more im-

portant than the specificity or precision in literature screening, and a recall over 0.95 should be prioritized. We

recommend to report the effectiveness indices of automatic algorithms separately. At the current stage manual

literature screening is still indispensable for medical systematic reviews.
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INTRODUCTION

In evidence-based medicine, systematic reviews are currently one of

the most powerful tools for evidence collection, critical appraisal,

and synthesis for certain research questions. Major steps of system-

atic reviews include the review question formulation, inclusion crite-

ria development, search strategy devising and implementation,

literature screening, data collection, meta-analyses where appropri-

ate, and risk of bias assessment.1,2 The literature screening step can

be extremely time-consuming and prevent on-time completion and

updates of systematic reviews.3–5 Practitioners have had difficulty

finding latest high-quality evidence for medical questions in system-

atic reviews, which may influence their decision-making in clinical

practice.

To reduce the workload and improve efficacy of evidence synthe-

sis, researchers are exploring artificial intelligence (AI) methods in

systematic reviews, such as pattern recognition and machine learn-

ing.6 At present, AI tools for systematic reviews, based on machine

learning, text mining, and natural language processing (NLP), are

on trial in the highly standardized and repetitive procedures of sys-

tematic reviews, such as literature screening, data extraction, and

risk-of-bias assessment.7–9 These automation tools have been newly

mentioned in the Preferred Reporting Items for a Systematic Review

and Meta-analysis (PRISMA) 2020 statement, yet little strong evi-

dence was provided for their application.10,11 A systematic review

on automating data extraction in systematic reviews reported insuf-

ficient development of automatic methods.12 For literature screen-

ing, automated classification systems13 or hybrid relevance rating

models14 have been evaluated in specific datasets, requiring further

extension and performance improvement. Few studies reviewing au-

tomated literature screening have been found. To address this gap in

knowledge, we sought to perform a systematic review and meta-

analysis on accuracy of AI methods for literature screening in medi-

cal evidence synthesis. In this review, the term literature refers to the

literature used in assessing the diagnostic accuracy of the AI meth-

ods (similar to “participant” in traditional diagnostic accuracy stud-

ies), and study relates to the AI model study included in our

systematic review (similar to “primary study” in traditional system-

atic reviews).

MATERIALS AND METHODS

This manuscript follows the Preferred Reporting Items for a System-

atic Review and Meta-analysis of Diagnostic Test Accuracy Studies

(PRISMA-DTA).15 The protocol of this systematic review was regis-

tered on PROSPERO (CRD42020170815, April 28, 2020).

Eligibility criteria
We included studies that met the following criteria: (1) automatic

methods were developed for literature screening for medical system-

atic reviews, (2) the research question and source of dataset used

were reported, and (3) the literature screening results by human

investigators were set as the reference standard. Editorials, commen-

taries, and narrative review articles were excluded.

Information source and search strategy
We developed the search strategy and conducted literature searches

in 3 major public electronic databases on biomedicine and computer

science: PubMed, Embase, and IEEE Xplore Digital Library. Re-

trieval was restricted to papers published between January 1, 2000

and December 22, 2021 (the last search date, see Supplementary Ta-

ble S1 in Supplementary File S1). We chose this date range because

AI algorithms prior to 2000 are unlikely to satisfy the requirements

for literature screening in systematic reviews. Reference lists of ini-

tially included studies were also checked to find more relevant stud-

ies. Potentially relevant abstracts and preprints were also searched

in Google Scholar. No restrictions were set on language.

Data collection and risk of bias assessment
Different from traditional systematic reviews, the “participants” in

this review were original medical studies and literatures, and the in-

dex test was AI algorithms used for automatic literature screening.

We defined traditional literature screening by human investigators

as the reference standard. The outcomes of our meta-analysis in-

clude effectiveness of literature screening, as well as labor and time

saving, which were mainly evaluated by recall (sensitivity), precision

[positive predictive value (PPV)], specificity, and the work saved

over sampling (WSS).13 WSS was defined as the work saved over

and above the work saved by simple random sampling for a given

level of recall, and could be calculated as:

WSS ¼ ðTNþ FNÞ=N – ð1:0 – RÞ;

where TN was the number of true negatives identified by the classi-

fier, FN was the number of false negatives identified by the classifier,

N was the total number of samples in the test set, and R was the re-

call.13 Since semi-automation and active learning methods require

manual screening or interactions during processing, studies applying

these models were not considered in final meta-analysis.

Study record information including titles and abstracts from

searched online databases was downloaded. Duplicate citations

were removed and the records were imported into EndNote X9.3.2

software (Thomson Reuters, Toronto, Ontario, Canada) for further

assessment. All citations and abstracts were independently screened

by 2 reviewers (SL, YF) based on the titles and abstracts, and the full

texts of potentially eligible citations were then reviewed indepen-

dently by the same 2 reviewers to select the studies for final inclu-

sion. Disagreements in both initial screening and final screening

were resolved by discussion with a methodologist (YZ). The ex-

cluded studies were listed and noted according to PRISMA-DTA

flowchart.

Using a designed data collection form, 2 reviewers (SL, YF) inde-

pendently extracted and verified data from finally included studies.

The detailed information of training sets and validation sets, AI

algorithms, and effectiveness and work-saving indices were col-

lected. Conflicts were resolved through discussion or by consulting

another member of the review team (YZ).

Two reviewers (SL, YF) independently assessed risk of bias with

a revised checklist based on Quality Assessment of Diagnostic Accu-

racy Studies (QUADAS-2).16 Detailed QUADAS-2 instrument used

in our analysis is listed in Supplementary File S1. Disagreements

were resolved by a third reviewer (YZ).
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Statistical analysis
Studies that reported the diagnostic 2-by-2 table or enough relevant

information to calculate the data were quantitatively combined us-

ing diagnostic meta-analysis methods. Diagnostic accuracy was

expressed by indicators including recall, precision (PPV), WSS, and

the summary receiver operating characteristic curve (SROC). Gener-

ally, numerous parameters can be changed and optimized in the AI

models to fit different application scenarios, so it is common that 1

automation study reported multiple groups of effectiveness and la-

bor-saving indices. In this meta-analysis, we mainly focused on 2

groups of effectiveness and labor-saving indices: (1) the precision

and WSS when achieving the maximized recall and (2) the recall and

WSS when achieving the maximized precision. Values of WSS were

directly collected from the studies or calculated based on reported

data of the studies without combination. Since WSS is dependent on

the recall, it was reported at diverse recall levels in different studies.

Therefore, we merely calculated them according to collected recall

values, and did not combine the potential heterogeneous WSS val-

ues. A bivariate model was used to combine the diagnostic accuracy

indices including the recall, specificity, and precision.17 Predefined

subgroup analyses were conducted according to AI algorithms (di-

vided into the support vector machines (SVMs) group and other

algorithms group including naı̈ve Bayes (NB), K-nearest neighbor

(k-NN), perceptron, etc), number of screened literatures for model

validation (similar to the “number of participants” in traditional di-

agnostic accuracy study, divided by the median value of all eligible

studies), and fraction of included literatures (similar to the

“prevalence” in traditional diagnostic accuracy studies, divided by

the median). Statistical analysis was completed in R (version 4.0.2,

R Foundation for Statistical Computing, Vienna, Austria, 2020,

https://www.R-project.org/) with “mada” package.18 SROC plots

were depicted using Review Manager 5 (RevMan 5).19

RESULTS

Search and screening
Applying the strategy shown in Supplementary Table S1 (Supple-

mentary File S1), the electronic search was conducted on December

22, 2021 in PubMed, Embase, and IEEE Xplore Digital Library. A

total of 10 102 publications were identified with 2239 duplicates

(Figure 1). An additional 104 publications were found through cita-

tion searching. After screening 7967 titles and abstracts, 161 studies

remained for further evaluation according to the predefined inclu-

sion and exclusion criteria. After screening the full texts, 86 studies

were included in the systematic review, and 71 studies were finally

included in the meta-analysis. Detailed citations of the full-text

screened publications were listed in Supplementary File S2.

Characteristics of included studies
The studies included in the systematic review were published be-

tween 200613 and 202120 and applied various AI algorithms to ex-

amine and improve automated medical literature screening

(Supplementary Table S3, Supplementary File S3). SVM was the

most commonly used classifier for literature screening, yet NB, k-

NN, perceptron, random forest, convolutional neural networks, ra-

dial basis function kernel, and other algorithms were applied as

well. Multiple studies analyzed and compared the performance of

more than 1 algorithm. Most automation studies used results of lit-

erature screening from existing systematic reviews to train and eval-

uate their classification models, while the rest of the studies directly

searched for literatures in certain databases or journals. All studies

used article titles, abstracts, and metadata rather than full texts for

training or validation. For studies included in the meta-analysis, the

datasets were divided into training and testing sets, for AI model

training and validation separately.

Risk of bias
Supplementary Table S4 (Supplementary File S3) shows the risk of

bias assessment of studies included in the meta-analysis according to

the revised checklist of QUADAS-2. We classified the majority of

domains as unclear or low risk of bias for all of the studies included.

None of the studies were rated as low risk of bias across all 4 of the

categories. The “patient” (literature) selection was the major source

of the risk of bias. Of the 18 studies 15 reported model performan-

ces on testing datasets from only 1 systematic review. Twelve studies

searched only MEDLINE when building the datasets. Ignoring other

databases such as EMBASE may lead to inappropriate exclusions.

Significant risk of bias also came from the index test. Eight studies

repeated random cross-validation, leading to a high distribution sim-

ilarity between training and testing dataset. Five studies presented

accuracy data at thresholds or hyperparameters which were not pre-

specified. In terms of applicability, all studies were low risk of bias

given that the literature selection, AI algorithms, and reference

standards conformed to this review.

Effectiveness and labor-saving indices
Among all the included studies in the meta-analysis, 15 of them

were available for data synthesis with maximized recall values (Sup-

plementary Table S5, Supplementary File S3), while 17 studies were

available with maximized precision values (Supplementary Table

S6, Supplementary File S3). A few studies have reported their WSS

values, and we calculated the rest of the WSS based on provided in-

formation from studies. Combined estimates of recall, specificity,

and precision of studies when achieving maximized recall values

(Table 1) were 0.928 (95% CI, 0.878–0.958), 0.647 (95% CI,

0.442–0.809), and 0.200 (95% CI, 0.135–0.287). Combined esti-

mates of recall, specificity, and precision of studies when achieving

maximized precision values (Table 1) were 0.708 (95% CI, 0.570–

0.816), 0.921 (95% CI, 0.824–0.967), and 0.461 (95% CI, 0.375–

0.549).

As shown in Supplementary Table S5 (Supplementary File S3),

the maximized recall of each included study in the meta-analysis

ranged from 0.484 to 1.000, while precision ranged from 0.061 to

0.581. The value of WSS ranged from �0.003 to 0.897. Supplemen-

tary Table S6 (Supplementary File S3) shows the maximized preci-

sion of each included study, ranging from 0.232 to 0.800. The

corresponding recall of these included studies ranged from 0.240 to

0.970, and the calculated WSS ranged from 0.095 to 0.841. Accord-

ing to the SROC plot of recall and specificity for all included studies

when achieving the maximized recall (Figure 2A), the recall values

of most studies could reach very high levels, while the specificity val-

ues had a large variation (the minimum was less than 0.1 and the

maximum was over 0.9). As for the studies with the maximized pre-

cision (Figure 2B), the variation ranges of both recall values and spe-

cificity values were large, though several studies achieved high levels

of recall and specificity simultaneously.

Table 2 shows the results of subgroup analyses according to differ-

ent algorithms, the number of literatures, and the fraction of included

literatures. In subgroup analyses for different AI algorithms, no signif-

icant differences were found between SVM and other algorithms in
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recall, specificity, and precision. Similarly, no significant differences

were found in subgroup analysis for the number of literatures. When

achieving the maximized recall, precision for larger fraction of in-

cluded literatures was higher than that with smaller fraction of in-

cluded literatures (precision for larger fraction was 0.296, 95% CI,

0.096–0.625, precision for smaller fraction was 0.137, 95% CI,

0.083–0.217, P¼ .020). The specificity in studies with larger fraction

of included literatures was lower than that with smaller fraction of in-

cluded literatures when the studies reached the maximized precision

(specificity for larger fraction was 0.729, 95% CI, 0.220–0.963, spe-

cificity for smaller fraction was 0.977, 95% CI, 0.945–0.991,

P< .001). For studies reaching the maximized recall, studies screening

larger number of literatures had better overall performance than the

subgroup of lower number of literatures (Figure 3B). A decline in

overall performance was found in the subgroup of larger fraction of

included literatures both for the maximized recall and the maximized

precision (Figures 3C and 4C).

DISCUSSION

Our review identified 86 AI studies in automated medical literature

screening, among them 17 studies were included in our final meta-

analysis. The combined recall was 0.928 when achieving the maxi-

mized recall by optimizing the AI model. However, this value was

only 0.708 when achieving the maximized precision, indicating that

more literatures might be missed if the automation model focused

on precision. The WSS values varied largely among studies either in

the maximized recall group or in the maximized precision group.

This is the first systematic review and meta-analysis in the area

of automatic literature screening aimed to quantitatively evaluate

the performance of AI methods and provide recommendations based

on evidence. We performed this systematic review and meta-

analysis in accordance with a robust and prespecified protocol. A

comprehensive literature search in major electronic databases was

performed in our review, using a reproducible retrieval strategy.

With 7967 screened records and 86 finally included studies, we are

Figure 1. Review flow diagram.

Table 1. Combined effectiveness indices of all eligible studies in meta-analysis

Analysis Number of studies Recall/Se (95% CI) Specificity (95% CI) Precision/PPV (95% CI)

All eligible studies when achieving

maximized recall

15 0.928 (0.878–0.958) 0.647 (0.442–0.809) 0.200 (0.135–0.287)

All eligible studies when achieving

maximized precision

17 0.708 (0.570–0.816) 0.921 (0.824–0.967) 0.461 (0.375–0.549)

CI: confidence interval; PPV: positive predictive value; Se: sensitivity.
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confident that the included studies constitute the most representa-

tive samples of AI studies investigating the literature screening task

in medical evidence synthesis. Currently, some studies failed to re-

port necessary data for diagnostic accuracy evaluation. Besides, ac-

tive learning and relevance feedback models in multiple studies

introduce extra expert annotation during the screening process,

which would improve the model performance accordingly. There-

fore, we further excluded these studies and included a total of 17

studies in meta-analysis to evaluate diagnostic accuracy of AI meth-

ods. The relatively large number of studies allowed for pooling com-

bined estimates of recall, specificity, and precision, and especially

for comparing the combined recall when achieving the maximized

recall or precision.

Literature screening is an imbalanced classification task, for the

total number of screened literatures is large while fraction of in-

cluded literatures is usually very low.21 In automatic literature

screening, the recall of the AI model reflects the ability to correctly

identify eligible literatures.22,23 More eligible literatures containing

quality evidence would be missed by the low-recall models, intro-

ducing significant selection bias to systematic review. A low-

precision model would mistakenly identify many irrelevant litera-

tures, leading to more paper-reading load in the follow-up manual

screening. For medical evidence synthesis, the introduction of bias is

unacceptable. Thus, in practice, a high level of recall should be pri-

oritized to make sure the automatic screening process includes as

many eligible literatures as possible. It is meaningless to focus on

precision when the level of recall failed to be optimized (theoreti-

cally should be close to 100%), for it indicates the probability of lit-

erature missing. Our study is the first one to provide solid evidence

for diagnostic accuracy indices balancing in automatic literature

screening. Two groups of effectiveness indices under maximized re-

call and maximized precision respectively in our review were com-

bined separately. According to our analysis, current models would

miss 7.2% of literatures on average when achieving maximized re-

call (combined recall: 0.928, 95% CI, 0.878–0.958), yet an average

of 29.2% would be missed if maximizing precision (combined recall:

0.708, 95% CI, 0.570–0.816), which could lead to severe selection

bias in systematic review. We therefore recommend that recall

should take priority over precision and other indices.

Previous studies have not specified the acceptable recall level.

Cohen et al assumed that a recall of 0.95 or greater might be re-

quired for the system to identify an adequate fraction of the relevant

literatures, though no further evidence was given.13 Our findings

provide direct evidence proving that a large number of studies failed

to achieve the recall of 0.95 even using a high-recall strategy in the

model training. The combined recall was 0.928 (95% CI, 0.878–

0.958) in our study. We therefore propose that 0.95 is still an impor-

tant benchmark of recall for future screening automation to hold.

The recall value over 0.95 indicates fewer eligible literature missing,

though the bias could not be completely eliminated.

When a high recall is achieved, the secondary goal of training is

to improve precision or specificity to decrease the false negative

identification, as well as to save the work to review every literature.

According to our results, the combined specificity and precision

were 0.647 (95% CI, 0.442–0.809) and 0.200 (95% CI, 0.135–

0.287) when achieving maximized recall. We first reveal the refer-

ence range of specificity and precision in medical automatic screen-

ing. It is useful for algorithm engineers to know the general

performance of previous models when selecting algorithms, tuning

hyper-parameters, and setting thresholds. It also enables medical ev-

idence experts to have an intuitive understanding of the application

of the automatic screening system. The low ranges of specificity and

precision indicate that more newly adjusted algorithms are required

for efficiency improvement in literature screening.

In addition, a large number of studies did not report their diag-

nostic accuracy indices normatively, affecting the interpretation of

Figure 2. Summary receiver operating characteristic (SROC) plot of sensitivity and specificity of automatic algorithms for literature screening (all included stud-

ies). The hollow symbols surrounded by 95% CI region (interrupted line) represent the pairs of sensitivity and specificity from the included studies; the symbols

are scaled according to sample sizes of the studies. (A) SROC plot when achieving maximized recall (sensitivity); (B) SROC plot when achieving maximized preci-

sion (positive predictive value).
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the results. The average effectiveness indices in previous studies,

such as F-score,21 often give equal or fixed proportion of importance

to recall, specificity, or other evaluation indicators, and thus may

obscure the target indicators and severely mislead the interpretation

of the results. Therefore, we recommend that the recall, precision,

specificity, and other effectiveness indices should be separately

reported.

Similarly, the development of AI models should cater for the

real-world usage scenario. As for systematic reviews assessing the

effectiveness of interventions, literature search is supposed to be

conducted in multiple databases, at least including MEDLINE,

Embase, and the Cochrane Library.1 Nevertheless, the results of the

automation studies included in this review have limited generaliz-

ability given that the training datasets applied by these studies were

mostly MEDLINE.13,24–29 We could find that most current popular

AI algorithms or models for NLP presented superior performance in

MEDLINE, yet further studies should pay more attention to the di-

versity of literature datasets, especially Embase and the Cochrane

Library, in medical evidence syntheses. Currently, most automation

studies used abstracts and metadata to train and test AI methods, it

is likely that performances in recall, specificity, and precision would

be improved by taking full-text screening into consideration. So far,

most of the automation studies failed to integrate unsupervised

learning in the training processes of AI models.30 Although the au-

Table 2. Combined effectiveness indices of subgroup analyses

Analysis Number of

studies

Recall/Se (95% CI) P for subgroup

difference

Specificity

(95% CI)

P for subgroup

difference

Precision/PPV

(95% CI)

P for subgroup

difference

Subgroups according to algorithms when achieving maximized recall

Other 7 0.911 (0.819–0.959) .614 0.720 (0.435–0. 896) .449 0.243 (0.142–0.384) .304

SVM 8 0.935 (0.624–0.992) 0.576 (0.073–0.959) 0.165 (0.039–0.491)

Subgroups according to algorithms when achieving maximized precision

Other 10 0.729 (0.554–0.854) .657 0.917 (0.772–0. 973) .901 0.419 (0.139–0.525) .220

SVM 7 0.671 (0.216–0.938) 0.926 (0.374–0.996) 0.528 (0.265–0.776)

Subgroups according to the number of literatures when achieving maximized recall

� 338a 8 0.908(0.792–0.963) .739 0.620 (0.341–0.837) .783 0.249 (0.150–0.384) .196

>338 7 0.925 (0.571–0.991) 0.673 (0.109–0.972) 0.155 (0.038–0.458)

Subgroups according to the number of literatures when achieving maximized precision

� 606a 9 0.771 (0.598–0.884) .229 0.844 (0.634–0.944) .056 0.479 (0.360–0.601) .648

>606 8 0.623 (0.186–0.923) 0.964 (0.624–0.998) 0.439 (0.191–0.721)

Subgroups according to the fraction of included literatures when achieving maximized recall

� 0.064a 8 0.932 (0.853–0.970) .969 0.760 (0.521–0.902) .135 0.137 (0.083–0.217) .020

>0.064 7 0.934 (0.620–0.992) 0.489 (0.064–0.930) 0.296 (0.096–0.625)

Subgroups according to the fraction of included literatures when achieving maximized precision

� 0.130a 9 0.616 (0.452–0.757) .367 0.977 (0.945–0.991) <.001 0.478 (0.355–0.604) .804

>0.130 8 0.714 (0.329–0.927) 0.729 (0.220–0.963) 0.455 (0.196, 0.741)

CI: confidence interval; PPV: positive predictive value; Se: sensitivity; SVM: support vector machines.
aThe median was utilized for subgroup division.

Figure 3. Summary receiver operating characteristic (SROC) plot of different subgroup analyses achieving maximized recall or sensitivity. The hollow symbols

surrounded by 95% CI region (interrupted line) represent the pairs of sensitivity and specificity from the included studies; the symbols are scaled according to

sample sizes of the studies. (A) Subgroup analysis based on different automatic algorithms (divided into SVM group and other algorithms group); (B) subgroup

analysis based on test sets with different number of literatures (similar with the “number of participants” in traditional diagnostic accuracy study, divided by the

median value of all eligible studies); (C) subgroup analysis based on test sets with different fraction of included literatures (similar with the “prevalence” in tradi-

tional diagnostic accuracy study, divided by the median).
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tomatic methods for literature screening process would be of great

help in medical evidence synthesis, the manual screening process is

still indispensable at early stage of training set establishment and

late stage of final exclusion.

In addition, the size of dataset is an important issue affecting

model accuracy. The largest dataset in this task consisted the litera-

tures from 30 to 50 systematic review topics.31,32 Besides perfor-

mance, the limitation on data amount may also lead to a high risk of

bias. Most included studies report accuracy on only 1 systematic re-

view. A single systematic review may focus on any specific area and

could not be considered as consecutive or random samples for a task

of general medical evidence synthesis. Only applying a supervised

dataset in several review topics would lead to discrimination-task

problems when expanding to other review topics. It may provide

better reference ranges for a general screening task to report the

overall recall and precision on dataset with heterogeneous sources.

We conducted subgroup analyses based on algorithm, database

used in literature search, and number and fraction of included litera-

tures. Specifically, the AI algorithms were divided into SVM and other

algorithms, as current evidence showed that SVM classifiers per-

formed well for text classification.33–37 The algorithms and the num-

ber of screened literatures were not found to affect the accuracy of

automated literature screening indicating a relatively homogeneous ef-

fectiveness. When achieving maximized recall, it is reasonable to ob-

serve higher precision (PPV) in studies with higher fraction of included

literatures (similar with “prevalence” in traditional diagnostic accu-

racy study). As an inherent and fixed property, specificity should not

be influenced by prevalence in diagnostic accuracy study. However,

higher specificity was found in studies with lower fraction of included

literatures with statistically significance. This finding should be inter-

preted with caution due to the lack of adjustment of multiple compari-

sons and potential confounding in the subgroup analyses, and further

studies are needed to verify this subgroup difference.

Limitations
Due to diverse recall levels as well as missing reported WSS in many

studies, we were unable to further analyze the work savings in auto-

matic literature screening. There was significant heterogeneity in lit-

erature topics for investigating the screening performance of

different AI algorithms, which limits the generalizability of the find-

ings. Studies utilizing the same incompletely collected research data-

set may influence the interpretation of summary outcomes due to

the introduction of a higher risk of bias. Although we used tradi-

tional literature screening by human investigators as the reference

standard, this reference standard is actually imperfect, since human

investigators may still miss eligible literatures during screening.38

This is also the case for some traditional diagnostic accuracy studies,

for example, the diagnosis of tuberculosis.39 Literature screening by

human investigators may be the best reference standard at current

stage but it is still possible that the potential misclassification weak-

ens the reliability of our findings.

CONCLUSION

Workload reduction in automated medical literature screening has

been acceptable, but the recall level of current automation studies

still needs to be improved. Our findings suggest that a recall of 0.95

should be prioritized in the model training. We recommend to report

recall and other indices separately rather than report average form

such as F-score in automated medical literature screening.
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Figure 4. Summary receiver operating characteristic (SROC) plot of different subgroup analyses when achieving maximized precision or positive predictive value.
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scaled according to sample sizes of the studies. (A) Subgroup analysis based on different automatic algorithms (divided into SVM group and other algorithms

group); (B) subgroup analysis based on test sets with different number of literatures (similar with the “number of participants” in traditional diagnostic accuracy

study, divided by the median value of all eligible studies); (C) subgroup analysis based on test sets with different fraction of included literatures (similar with the

“prevalence” in traditional diagnostic accuracy study, divided by the median).
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