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Abstract 
Deep neural network models have recently achieved state-of-the-art performance gains in a variety of 

natural language processing (NLP) tasks (Young, Hazarika, Poria, & Cambria, 2017). However, these gains 
rely on the availability of large amounts of annotated examples, without which state-of-the-art performance is 
rarely achievable.  This is especially inconvenient for the many NLP fields where annotated examples are 
scarce, such as medical text. To improve NLP models in this situation, we evaluate five improvements on 
named entity recognition (NER) tasks when only ten annotated examples are available: (1) layer-wise 
initialization with pre-trained weights, (2) hyperparameter tuning, (3) combining pre-training data, (4) custom 
word embeddings, and (5) optimizing out-of-vocabulary (OOV) words. Experimental results show that the F1 
score of 69.3% achievable by state-of-the-art models can be improved to 78.87%. 

 

1 Introduction 
Electronic health records (EHRs) are the 

databases used by general practitioners (GPs) 
and hospitals to build and store the medical 
history of patients (O. A. Johnson, Fraser, Wyatt, 
& Walley, 2014). These records include 
information such as the reason for administering 
drugs, previous disorders of the patient or the 
outcome of past treatments, and they are the 
largest source of empirical data in biomedical 
research, allowing for major scientific findings in 
highly relevant disorders such as cancer and 
Alzheimer’s disease (Perera, Khondoker, 
Broadbent, Breen, & Stewart, 2014). However, 
most of the information held in these EHRs is in 
the form of natural language, making it largely 
inaccessible for statistical analysis (Murdoch & 
Detsky, 2013). Unlocking this information can 
bring a significant advancement to biomedical 
research.  

Rule-based systems can extract medical 
information with good accuracy in simpler 
situations, such as when the to-be-extracted 
information follows regular speech patterns (e.g. 

mentions of regulated medical codes such as 
ICD9) (Karystianis et al., 2018). However, these 
systems don't scale well to complex patterns (e.g. 
descriptions of symptoms), variations of text 
patterns (e.g. American English against British 
English) or badly structured text (e.g. not 
standardized abbreviations are very common in 
EHRs), which is more akin the situation found in 
EHRs. Further, designing rule-based systems is 
very time-consuming and requires expert field 
knowledge. In these more complex situations, 
machine learning (ML) -based methods 
outperform rule-based ones by tuning general 
algorithms with existing data. Most recently, 
neural networks are being especially successful in 
complex NLP tasks (Young et al., 2017), where 
more traditional rule-based and other ML-based 
methods fail (Cambria & White, 2014). For 
instance, a combination of the long short-term 
memory (LSTM) type of recurrent neural networks 
(RNNs) and a convolutional neural network (CNN) 
has been successfully applied to set new state-of-
the-art performance for NER tasks based on 
CoNLL-2003 and OntoNotes 5.0 data (J. Chiu & 
Nichols, 2016). The main remaining limitation of 
neural networks lies on the need for large 
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amounts of annotated text, which is especially 
troublesome for their application to EHRs. 
Namely, only a few publicly available datasets 
exist for medical NLP, and even fewer exist with 
annotations for NLP tasks (e.g. document 
classification; or slot filling). The best known of 
these datasets are MIMIC-III (A. E. W. Johnson et 
al., 2016) and i2b2 (i2b2, 2018, p. 2). Therefore, 
improving the performance of neural networks 
when very few annotated examples are available 
remains a high priority in biomedical research. 

In this paper, we demonstrate the effect of five 
sequential improvements on the learning 
capabilities of a neural network when having very 
few annotated examples. We start by setting the 
objective of optimizing performance on the NER 
task of i2b2 2009 while using only 10 randomly 
selected annotated discharge summaries. With a 
state-of-the-art NER architecture as the baseline 
(J. Chiu & Nichols, 2016), we sequentially design 
and apply a number of improvements that 
substantially improve performance on this 
objective. This improves performance from 69.3% 
at baseline to 78.87%.   

2 Methods 

2.1. Data  

Six medical NER datasets were used: one 
defining the target task and therefore used for 
supervised training and testing (i2b2 2009), two 
for supervised pre-training of weights (i2b2 2010 
and i2b2 2012), and three for unsupervised 
training of custom word embeddings (BioNLP-
2016, MIMIC-III and UK CRIS). In addition, a non-
medical dataset (CoNLL-2003) was also used for 
supervised pre-training of weights. Each of the 
datasets used in a supervised fashion (i.e. i2b2 
sets and CoNLL-2003) provided a number of 
target NER categories that were applied as labels 
(see table 1), while in the datasets used in an 
unsupervised fashion original annotations were 
ignored (see table 2). We have restricted the 
i2b2b 2009 data to only 10 random samples 
drawn from the full training dataset.  

The Informatics for Integrating Biology & the 
Bedside (i2b2) non-profit foundation has run a 
series of yearly NLP challenges, publishing digital 
copies of annotated, hand-written and fully 
deidentified clinical notes. The i2b2 challenge 
2009 focused on extracting medication 
information from de-identified discharge 
summaries from Partners Healthcare (O. Uzuner, 
Solti, & Cadag, 2010). The 2010 i2b2/VA 
Relations Challenge used discharge summaries 
and progress reports from Partners Healthcare, 
Beth Israel Deaconess Medical Center, and the 
University of Pittsburgh Medical Center (Ö. 
Uzuner, South, Shen, & DuVall, 2011). The 2012 
i2b2 challenge included a task on extracting 
problems, tests, treatments, clinical departments, 
evidentials (i.e. events indicating the source of 
information) and occurrences (e.g. admission, 
transfer) in discharge summaries provided by 
Partners Healthcare and the Beth Israel 
Deaconess Medical Center (Sun, Rumshisky, & 
Uzuner, 2013).  

The Conference on Natural Language 
Learning (CoNLL) is a yearly conference 
organised by SIGNLL (ACL's Special Interest 
Group on Natural Language Learning). CoNLL-
2003 includes English language newswire articles, 
annotated with persons, locations, organizations 
and names of miscellaneous entities that do not 
belong to any of the previous three groups (Sang 
& De Meulder, 2003). 

Dataset NER category Label 
count 

i2b2 2009 
[restricted] 

Medication names 236 
Dosages 134 
Modes 104 
Frequencies 116 
Durations 12 
Reasons 44 

i2b2 2010 
Tests 2,513 
Problems 4,197 
Treatments 2,771 

i2b2 2012 

Problems 2,989 
Tests 1,604 
Treatments 2,269 
Clinical dep  583 
Evidentials 447 
Occurrences  2,043 

CoNLL-2003 

Organizations 6,321 
Persons 6,600 
Locations 7,140 
Miscellaneous  3,438 

Table 1. Data. Count of samples per named entity in i2b2 
datasets used for supervised training. I2b2 2009 still 
contains further samples from 10 more records, which were 
only used for testing.  
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 BioNLP-2016 provides word vectors based on 
text data from a PubMed Central Open Access 
subset (PMC) and PubMed (B. Chiu, Crichton, 
Korhonen, & Pyysalo, 2016).  

The MIMIC III v1.4 database consists of 
58,000 critical care hospital notes from Beth Israel 

Deaconess Medical Center in 
Boston, Massachusetts (A. E. W. 
Johnson et al., 2016).  

UK CRIS allows controlled 
access to EHRs of mental health 
hospitals across the UK, among 
which we accessed the Oxford 
Mental Health Clinic at Warneford 
Hospital, containing approximately 
500,000 patient records (Callard et 
al., 2014; Stewart et al., 2009).  
This dataset is maintained by the 
UK National Health Service (NHS), 
and is only accessible through 
controlled ethical approval and 
audit processes (further information 
at https://crisnetwork.co/). 

2.2. Baseline model  

The baseline model is based on 
the state-of-the-art NER 
architecture for CoNLL-2003 and 
OntoNotes 5.0 text data (J. Chiu & 
Nichols, 2016). The model has 
three inputs, namely a character-
level, word-level and casing input, 
each of which encodes a different 
aspect of the text (see Figure 1). 
The architecture starts processing 
these three inputs independently, 
but then merges them to process 
further. This architecture does so 
through a number of atomic 
operations or layers, which we 
describe as follows: 

• Character embedding 
layer (char_input in Figure 1) maps 
a vocabulary of 97 possible 
characters to 30-dimensional 
embedding, initialized randomly 
from 𝑈(−0.5,0.5). The number of 
input samples per batch (‘b’ in 
Figure 1) and the number of words 
per sample (‘w’) vary from batch to 
batch. The maximum number of 

characters per word (‘c’) was 52. 
• Dropout layers (char_dropout1 and 

char_dropout2 in Figure 1) with drop rate 0.5 
are applied to the character-level input to 
mitigate the risk of overfitting.  

 
Figure 1. Model architecture. Operations are represented by rectangles, with 
operation name in black bold letters, its corresponding Keras code below, function 
names in green and non-default parameters in red. Tensors exchanged by 
operations are represented by blue arrows, with the size of each tensor in brackets. 
A legend in the upper right corner lists the meaning of some numbers and variables 
used in the diagram 
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• 1D convolutional layer (char_conv) processes 
the 1-dimensional character input with 30 
kernels of width 3. This layer is followed by a 
1d maxpool operation (char_maxpool) of 
window size 52 and stride of 52, which 
effectively compiles the character dimension 
into size 1. The kernel is initialized by drawing 
from a Glorot uniform distribution (Glorot & 
Bengio, 2010). Bias terms are initialized to 
zero. 

• Word embedding layer (words_input) maps a 
vocabulary of ‘Vw’ words into 50-dimensional 
embeddings. Unless stated otherwise, we use 
the GloVE Wikipedia 2014 and Gigaword 5 
embeddings with 6B tokens (Pennington, 
Socher, & Manning, 2014).  

• Casing embedding layer (casing_input) maps 
a vocabulary of ‘Vca’ casing types into Vca-
dimensional embeddings. By default, 8 casing 
types are considered: numeric, allLower, 
allUpper, mainly_numeric (more than 50% of 
characters of a word are numeric), initialUpper, 
contains_digit, padding and other (if no 
category was applicable). 

• Concatenation layer (merge_concatenate) 
combines processed character-level (a vector 
of 30 dimensions per sample input), word-level 
(50 dimensions) and casing (Vca dimensions) 
data into a vector of 80 + Vca dimensions. 

• Bidirectional LSTM (BLSTM) (Schuster & 
Paliwal, 1997) layer (merge_BLSTM) 
transforms the previously concatenated data 
into two vectors of 200 units, one applying 
forwards and another backwards recursion on 
the input The kernels are initialized by drawing 
from a Glorot uniform distribution (Glorot & 
Bengio, 2010). Bias terms are initialized to 
zero.  

• Dense output layer (merge_softmax) applies 
a layer-wise softmax function to output a 
prediction for locating and classifying 
sequences of words in the input text. The 
number of units depends on the specific 
objective task. The kernel is initialized by 
drawing from a Glorot uniform distribution 
(Glorot & Bengio, 2010). Bias terms are 
initialized to zero. 

In this baseline model, all parameters are 
trained with Nadam optimizer with default 
parameters (as defined in Keras version 2.2.0), 
dividing data into 64 batches. The baseline model 

is implemented in Python using Keras and 
TensorFlow libraries and available from 
https://github.com/mxhofer/Named-
Entity-Recognition-BidirectionalLSTM-
CNN-CoNLL.  

2.3. Single pre-training  

An approach that is generally successful in 
computer vision tasks where few annotated 
examples are available consists of pre-training on 
another related task where substantially more 
samples are available. For example, one study 
pre-trained on a large labeled training corpus of 
still images and successfully transferred learning 
to a more sparsely labelled image corpus for 
video recognition (Su, Chiu, Yeh, Huang, & Hsu, 
2014). This pre-training approach is the first 
method we applied to improve the baseline 
architecture performance. Network parameters 
were pre-trained separately on each of three 
distinct NER tasks, two of them belonging to the 
same domain as the target task (i2b2 2010 and 
i2b2 2012, medical text), and one belonging to a 
different domain (CoNLL-2003, non-medical text). 
Three different initialization strategies were 
compared: initializing all layers with pre-trained 
weights; initializing only layer merge_BLSTM 
(other layers are initialized randomly); and 
initializing all but the merge_BLSTM (the 
merge_BLSTM is initialized randomly). In all 
cases, the embeddings of words_input are not 
trained but rather frozen to the values of GloVE. 

2.4. Hyperparameter tuning 

Our second improvement, incorporated in 
addition to this one described in section 3.3, 
consisted of tuning hyperparameter values via 
grid search. This is a common approach that has 
been successfully applied across multiple NLP 
tasks, such as WikiQA and SemEval-2016 (Min, 
Seo, & Hajishirzi, 2017). The hyperparameters 
that we fine-tuned were: optimizers (selecting 
either stochastic gradient descent (SGD) or 
Nadam); pre-training dataset (either i2b2 2010 or 
i2b2 2012); SGD learning rates (0.04 or 0.08); 
batch normalization (with or without); trainable 
word embeddings (weights of layer ‘words_input’ 
trained on the objective task or frozen to GloVE 
values) and learning rate decay (constant or time 
scheduled).  
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2.5. Combined pre-training 

Besides pre-training in individual datasets (as 
done in section 2.3), pre-training in combined 
datasets can further improve performance on the 
target task. For example, a health informatics 
study has used six publicly available datasets for 
lung CT scans to identify lung patterns using 
convolutional neural networks, which resulted in a 
2% performance increase in the target domain 
(Christodoulidis, Anthimopoulos, Ebner, Christe, & 
Mougiakakou, 2017). To test whether our target 
task benefited from combined pre-training, now 
we combined learning from both i2b2 2010 and 
2012. This is achieved by sequentially learning 
from each dataset in either of two possible 
directions: first training a randomly initialized 
model on i2b2 2010, and then continuing training 
on i2b2 2012; or first training on 2010's and then 
on 2012's. In either case, the final weights 
obtained from the second training round were 
then used as initial values when training in the 
objective task. 

2.6. Customized word embeddings  

While previously (sections 2.2, 2.3, 2.4 and 
2.5) we used GloVE embeddings for the words 
input (word_input in Figure 1) these vector 
representations  are expected to be inaccurate for 
medical terms, as they rarely appear in the 
general domain corpora used to create GloVE. To 

mend this problem, our fourth improvement 
consisted of developing our own word 
embeddings trained on either CRIS, MIMIC III or 
BioNLP-2016. CRIS and MIMIC III embeddings 
were trained with Facebook’s FastText 
(Bojanowski, Grave, Joulin, & Mikolov, 2016; 
Joulin, Grave, Bojanowski, & Mikolov, 2016) 
algorithm, a minimum word count of 5, an initial 
learning rate of 0.05 and context window size of 5. 
BioNLP-2016 were downloaded from the official 
repository (Cambridge Language Technology Lab, 
2018) and used without further preprocessing. 

2.7. Optimizing OOV words  

Data inspection revealed that the target 
dataset (i2b2 2009) contained a high proportion of 
out-of-vocabulary (OOV) words. These are words 
not included in the vocabulary of the embeddings 
that can have a highly detrimental impact on 
performance. In our case, a large proportion of 
OOV terms included trailing and leading 
characters, such as “increase dosage: +20 mgs 
week”. To reduce OOV, our last improvement 
added the following two steps to text 
preprocessing: 

• Remove trailing “:”, “;”, “.” and “-”. 
• Remove quotations 
• Remove leading “+” 

3 Results  
As described in the introduction, first we 

defined a few shots learning objective task, which 
consisted on the official objective of the i2b2 
challenge of 2009 but being allowed to train only 

 
Figure 2. Learning speed during single pre-training. 
Aggregate F1 scores for different initializations (random, 
CoNLL-2003, i2b2 2010 and i2b2 2012) applied to all layers 
of the target domain, plotted over the number of training 
epochs.  

 

Initialization Layers F1 score 
Random All 69.30 
CoNLL-2003 All 68.47 
 BLSTM only 71.19 
 All but BLSTM 69.80 
i2b2 2010 All 73.82 
 BLSTM only 72.02 
 All but BLSTM 71.23 
i2b2 2012 All 71.32 
 BLSTM only 70.42 
 All but BLSTM 70.91 

Table 2. Single pre-training. F1 scores per type of 
initialization (random, or pre-trained in CoNLL-2003, i2b2 
2010 or i2b2 2012) and layer (all, BLSTM only or all but 
BLSTM). The best-performing combination is highlighted in 
bold.  

 



 

 

 

6 

on 10 annotated, randomly sampled discharge 
summaries. Subsequently, we implemented one 
of the state of the art NER architectures and 
evaluated the effect of five sequential 
improvements over this baseline model. 

3.1. Baseline model  

The baseline model is based on a state-of-the-art 
NER architecture initially proposed for CoNLL-
2003 and OntoNotes 5.0 corpora (J. Chiu & 
Nichols, 2016). As described in methods (see 
Figure 1), it consists of a BLSTM with casing, 
word and character level inputs, with the latter one 
also undergoing one convolution and dropout. 
Layer ‘words_input’ is initialized with GloVE 
embeddings trained on Wikipedia 2014 and 
Gigaword (6B tokens). These embeddings are 
frozen after initialization and not modified further 
during backpropagation. Embeddings of 
‘char_input’ and ‘casing_input’ are randomly 
initialized with the uniform distribution 
𝑈(−0.5, 0.5).  All other parameters are randomly 
initialized following Keras (version 2.2.0) defaults. 
Data is then divided into 64 batches and all not 

frozen embeddings, weights and biases trained by 
Nadam with default Keras parameters. This 
baseline architecture with this initialization and 
training method  obtained an F1 score of 69.30% 
on our objective task (see Figure 2).  

3.2. Single pre-training  

Single pre-training is the first improvement 
implemented over the baseline model. While the 
baseline model initialized all parameters randomly 
(except the embeddings of layer ‘words_input’), 
single pre-training initialized either parts or the 
entire neural network by pre-training in other 
datasets. Initializing layers by pre-trained on i2b2 
2010 (average F1 increase of +3.06% over 
baseline) or i2b2 2012 (+1.58%) performed better 
than weights pre-trained on CoNLL-2003 
(+0.52%) and better than randomly initialized 
weights (69.3%).  Furthermore, initializing all 
layers performs both better than initializing only 
the BLSTM (71.21%) or all but the BLSTM layer 
(70.65%). Results of all combinations are shown 
in Table 2. Pre-training all layers and on i2b2 
2010 was the combination achieving the best 

 
Figure 3. Tuning hyperparameters. F1 scores split by optimizers, initializations, batch normalization (BN), trainable embeddings 
(TE) and learning rates (LR). All SGD learning rates are constant.  
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performance with an F1 score of +4.52% with 
respect to the baseline. We, therefore, 
incorporated this improvement into the model for 
subsequent experiments. 

Interestingly, pre-training on datasets of the 
medical domain enabled faster learning than 
otherwise. By epoch 5, the average F1 score of 
i2b2 2010 and 2012 was 58.98%, but 50.2% for 
CoNLL-2003 and 28.47% for random 
initializations (see Figure 2).  

3.3. Hyperparameters  

Tuning hyperparameters is the second 
improvement tested, and it was implemented over 
the best performing model with single pre-training. 
Of all the evaluated hyperparameters, the one 
with the largest impact was the optimizer, with 
Nadam achieving 70.41% on average and SGD 
50.56%. The second most important 
hyperparameter was the data used for pre-training 
the neural network, with i2b2 2010 achieving up to 
+2.34% and i2b2 2012 up to +1.58%. The effects 
of other hyperparameters (batch normalization, 
trainable embeddings, learning rates and learning 
rate decay) were inconclusive, as visualized in 
Figure 3. We, therefore, fixed the optimizer to 
Nadam and kept using i2b2 2010 for pre-training, 
while rejecting other hyperparameter changes. 

3.4. Combined pre-training 

Pre-training simultaneously with several 
datasets is the third improvement tested, and it 
was implemented over the best model of fine-
tuned hyperparameters. The results show that 
separate pre-training with i2b2 2010 outperforms 
combined pre-training of either direction. Pre-
training first on 2010's and then on 2012's 
obtained -1.85% F1 while the opposite direction 
resulted on -1.66%. We, therefore, rejected 
combined pre-training and continued using i2b2 
2010 alone for subsequent experiments.   

3.5. Customizing word embeddings  

Customizing the embeddings of layer 
‘words_input’ by pre-training them is the fourth 
improvement tested, and it was implemented over 
the best model of fine-tuned parameters 
(combined pre-training was rejected). All previous 
models were using GloVE word embeddings with 
50 dimensions, with values fixed to those publicly 
available 

(https://nlp.stanford.edu/projects/gl
ove/). Replacing these with embeddings trained 
on MIMIC III (word vectors of 50 or 200 
dimensions) achieved +3.78% F1 score (200 
dimensions) with respect to the best result of 
section 3.3; BioNLP-2016 (200 dimensions, 
window size, w, of 2 or 30) -7.4%; and UK CRIS 
(50 or 200 dimensions) -2.16%. For completion, 
all three possibilities were evaluated while pre-
training the rest of the network in either i2b2 2010 
or i2b2 2012 (see Table 3 for the result of each 
combination). The best combination was MIMIC III 
with i2b2 2010 with an F1 score of 78.07% 
(+3.78%).   

Interestingly, MIMIC III was also the dataset 
with fewest OOV terms with respect to the 
objective task (see Table 4). 

3.6. Optimizing OOV words  

Reducing the number of OOV words in the 
embeddings of layer ‘words_input’ was the fifth 
and final improvement tested, and it was 
implemented over the model with best-customized 
embeddings. The number of OOV words 
depended on the dataset used to generated the 
word embeddings (see Table 4). The additional 

Embedding Dim. Initializat. F1 
GloVE 50 i2b2 2010 72.29 
GloVE 50 i2b2 2012 72.13 
MIMIC III 50 i2b2 2010 73.34 
MIMIC III 50 i2b2 2012 72.21 
MIMIC III 200 i2b2 2010 78.07 
MIMIC III 200 i2b2 2012 76.91 
BioNLP-2016 2w 200 i2b2 2010 66.89 
BioNLP-2016 2w 200 i2b2 2012 66.76 
BioNLP-2016 30w 200 i2b2 2010 66.25 
BioNLP-2016 30w 200 i2b2 2012 64.64 
CRIS 50 i2b2 2010 68.24 
CRIS 50 i2b2 2012 68.75 
CRIS 200 i2b2 2010 72.13 
CRIS 200 i2b2 2012 71.02 

Table 3. Customizing word embeddings. F1 scores for 
each word embedding, word vector dimension and i2b2 
initialization. The best-performing combination is highlighted 
in bold. ‘Dim’ stands for ‘dimentions’, ‘Initializat’ for 
‘initialization’. 
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preprocessing steps described in section 3.7 
reduced OOV words by 3% for MIMIC III, 7% for 
CRIS, 11% for GloVE and 11% for BioNLP-2016. 
The results show that this step can improve the 
F1 score marginally in all cases, but never 
decreases performance. Using i2b2 2010 for pre-
training weights, MIMIC III embeddings and the 
additional pre-processing steps increase the F1 
score from 78.07% to 78.87%.  

4 Discussion 
The problem of having limited annotated 

samples has been addressed in several domains 
with one-shot (Fei-Fei, Fergus, & Perona, 2006; 
Vinyals, Blundell, Lillicrap, Kavukcuoglu, & 
Wierstra, 2016) and even zero-shot learning 
(Xian, Lampert, Schiele, & Akata, 2017). 
However, to our knowledge, this challenge has 
not been addressed in medical text, where the 
problem is especially taxing. Namely, medical text 
from EHRs is different from other corpora, to the 
point that non-clinically trained readers can hardly 
understand EHR text due to the extensive use of 
technical terms, non-standard acronyms and 
unofficial shorthand. For this reason, standard 
transfer learning methods from other better 
annotated but non-medical corpora (e.g. using 
standard Glove embeddings or language models 
trained in Wikipedia) are expected to perform 
badly. Hence, we believe that contributions such 
as this paper are especially important. 

Besides the final model, our experiments make 
a number of observations applicable to this 
challenge. The results derived from our first 
improvement (section 3.2) over the baseline 
model suggest that pre-trained weights based on 
text similar to the target domain substantially 
improve performance (see Table 2 and Figure 2). 
Better transfer learning within domain than across 
domain has also been reported elsewhere, e.g. 
(Tan, Zhang, Pan, & Yang, 2017). The 

improvement we observe is especially drastic for 
the first stages of learning and tends to diminish 
towards an asymptotic positive constant after long 
learning (see Figure 2).  

Our second model improvement (section 3.3) 
indicates that the choice of optimizer has a larger 
effect on the F1 score than using batch 
normalization (BN) and trainable word 
embeddings (TE). BN and TE show inconclusive 
results, while Nadam optimizer outperforms SGD 
in all the situations tested (see Figure 3). This is in 
line with a recent study that has evaluated the 
impact of different hyperparameters for NER 
tasks. They have found that the Nadam optimizer 
performs best while also converging the fastest 
(Reimers & Gurevych, 2017). 

Combining pre-training data, our third 
improvement, decreased performance (section 
3.4). There are two possible explanations for this. 
Firstly, we have optimized hyperparameters on 
separate datasets in section 3.3. Secondly, when 
the model has trained on the first dataset and then 
refines the weights on the second dataset, it might 
find the initial values unsuitable and subsequently 
has to adjust them by a lot more than if the 

 
Figure 4. Summary. The figure shows the increase (green) or 
decrease (red) in performance (y-axis) produced after each 
improvement (x-axis). Baseline F1 score is 69.3% and the 
final F1 score is 78.87%. 

 

Embedding OOV terms Decrease after 
optimization 

GloVE 3,583 11% 
BioNLP-2016 3,537 11% 
CRIS-2003 5,838 7% 
MIMIC III 3,090 3% 

Table 4. OOV terms. Number of OOV terms or each word 
embedding. 
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weights were initialized randomly, which is the 
case for generating separate pre-trained weights. 

Finally, results from the fourth improvement 
(section 3.5) suggest that custom word 
embeddings trained on text from the same domain 
as the objective task specially improve 
performance (see Table 3). This may be due in 
part to the fewer OOV words resulting from 
embeddings training on domain-specific corpora 
(see Table 4).  

As a final comment, our study still has several 
limitations, and future work should address these. 
Firstly, the improvement steps were applied 
sequentially, so a different ordering could further 
improve performance on the objective task. Given 
this search space limitation, the results found in 
this study can be considered conservative. Finally, 
an F1 score of 78.87%, is still fairly low compared 
to the performance achievable with large 
annotated corpora.  
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