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Abstract
Rationale, aims and objectives Repeated measures studies are found in many areas of
research, particularly in areas of healthcare. There is currently little information available
to inform the method of meta-analysis of repeated measures studies so that the structural
dependence of the data is appropriately accommodated and the findings are meaningful.
Method Using a published meta-analysis on the impact of diet advice on weight reduction
of obese or overweight individuals, we demonstrate possible approaches for repeated
measures meta-analysis. These approaches differ in terms of the type of result obtained
(e.g. effect at a particular time-point, trend over time, change between time-points) and the
data needed for the analysis (e.g. means, regression slope estimates). Some approaches
involve violating assumptions of independence in the data structure and so to investigate the
impact of this violation a simulation study is carried out.
Results The different approaches described for the meta-analyses of repeated measures
studies can all provide useful effect estimates depending on the question to be addressed by
the meta-analysis. However, violation of the independence assumption in some approaches
can lead to biased estimates.
Conclusions In practice, the methods available to carry out meta-analyses of repeated
measures studies will not only depend upon the question of interest, but also on the data
available from the primary studies.

Introduction
Repeated measures studies are designed to record measurements
or observations of a unit, say an individual or site, at a number of
time-points in order to assess follow-up, trend or change over time.
This study design is used in diverse disciplines, for instance to
model and analyse forest fuels at different sites [1], the health
status of animals in toxicology experiments [2,3], depression in
children [4], the short or long-term effects of smoking cessation
interventions [5] and bone mineral density measurements with
ongoing increased milk intake [6]. However, the analysis of this
type of design is not straightforward as the unit of analysis is not
the observation, per se, but the unit on which the observations are
made, for instance the individual (human or animal) in health
studies or the study site in ecology. Thus the temporal non-
independence between measurements must be considered as the
same individuals, or sites, are being measured at each time-point.

There are a number of approaches to the primary analysis of this
type of data. These range from (i) assessing the effect at one
particular time-point only; (ii) calculating and assessing summary
statistics of the individual measurements at each time-point, ignor-
ing the temporal dependence; and (iii) using more complex analy-
ses such as multivariate analysis of variance or multilevel models

including growth and growth-mixture models [7]. Unlike the first
two approaches, these more sophisticated models can account for
the dependencies induced by the study design [8].

In the past 20 or so years, there has been an explosion of primary
analyses in all disciplines. To help inform policy and decision
making on a specific question, this research has to be identified,
reviewed, combined and critically assessed. Secondary analyses in
the form of systematic reviews and meta-analyses have been com-
monly used in psychology and education [9], and in medicine
[10,11] to allow formal evaluation of the relevant evidence for a
particular question of interest, but are increasingly being adopted
in other areas of research [12]. Meta-analysis allows for a quanti-
tative summary of the evidence from multiple studies about a
measurable parameter (e.g. mean, correlation) of interest [10].
Advantages include greater statistical power than in a single study,
the potential to be more generalizable, as well as the potential for
more precise estimates [13,14]. Meta-analyses also allow a frame-
work for investigation of publication and other biases, and for
possible sources of heterogeneity between studies [13,14].

Although standard techniques are available for the meta-
analysis of most types of studies, to date there has been little
guidance available to researchers for the meta-analysis of repeated
measures. Although examples of repeated measures meta-analysis
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exist, they often assume that the raw data from each study, the
individual participant data (IPD), are available [11,15,16], or only
compare two time-points, for example, pre- versus post-treatment
[4,17]. Meta-analysis of IPD is considered the ‘gold standard’
[18]. When the IPD are available a one- or two-stage approach
could be taken to the meta-analysis of repeated measures studies
[19]. The two-stage approach involves analysing each individual
study and then combining the summary estimates as in a usual
meta-analysis. The one-stage approach includes all the IPD in the
synthesis model with study as an identifier [19]. However, it is
often very difficult to obtain all of the IPD for a meta-analysis and
properly account for study-specific issues such as design, missing
data, covariates, biases and confounders. Hence, a meta-analysis
of IPD is rarely feasible [20]. The case where only two time-points
are considered in a repeated measures meta-analysis requires a
more simple approach. In this situation, consideration of the dif-
ference between an individual’s measurements at the two time-
points will lead to a single summary effect (e.g. mean difference),
which can be combined using standard meta-analysis methods.
Often, however, more than two time-points are measured in a
study, in which case this pairwise difference approach requires
adjustment for multiple testing and does not completely address
the desired inferential questions.

The Cochrane Handbook [21] makes a number of recommen-
dations for the meta-analysis of repeated measures data, including
the use of IPD and assessment of one particular time-point. Other
suggestions are to calculate and combine a summary effect for
each individual across time (e.g. the mean effect or some measure
of trend over time), perform separate analyses at each time-point
or select and meta-analyse results for just the final time-point in
each study. It may be unlikely that all primary studies analyse and
present results in a standard way, so there needs to be some
consideration of how to deal with results that are not reported in
the same format. The choice of method will depend on the ques-
tion of interest (i.e. an outcome at a particular time-point or trend
over time) and the data available from the primary studies. In the
absence of guidance on this, the aim of this paper is to outline and
illustrate a number of possible approaches. We discuss the consid-
erations to be made and limitations of the approaches in addition
to areas for further work. To reflect the most likely scenarios for
meta-analysis of repeated measures studies, in the rest of this
paper, we assume that the IPD is not available and that there are
more than two time-points to be considered. We now introduce the
illustrative meta-analysis used in this paper.

Methods

Illustrative meta-analysis

Pirozzo et al. [22] report a Cochrane systematic review and meta-
analysis of the impact of advice about low-fat diets on the weight
reduction of obese or overweight individuals compared with other
weight-loss interventions. Six randomized controlled trials were
included in the meta-analysis, each of them having at least
6-month follow-up from the intervention. The main outcome of
interest was the difference in weight loss between subjects given
low-fat diet advice and control subjects at 6, 12 and 18 months
follow-up: a negative value for the mean difference indicates more

weight loss in the treatment group, whereas a positive mean dif-
ference indicates more weight loss in the control group.

Only three of the six studies measured and reported weight loss
at all three time-points [23–27]; one study only reported weight
loss at 6 months [28] and the remaining two studies only reported
weight loss at 12 months [29,30]. The reported mean differences at
each time-point for the six studies are shown in Fig. 1. Pirozzo
et al. [22] report observing between-study heterogeneity and use
random effects inverse-variance meta-analysis models [31] to
combine the mean difference in weight loss between treated and
control subjects at each time-point. The reported pooled mean
differences [and 95% confidence intervals (CIs)] at the different
follow-up times are as follows where n is the number of studies
contributing to the pooled effect: at 6 months (n = 4): 1.72 (-1.39,
4.83); at 12 months (n = 5): 1.06 (-1.62, 3.75); at 18 months
(n = 3): 3.66 (-1.84, 9.15).

Meta-analysis methods and models

In this section, a number of approaches for the meta-analysis of
repeated measures studies are described. We also consider the type
of question the different methods attempt to answer and the format
of the data needed to apply each approach. We present the results
of frequentist meta-analysis and, where more appropriate, Baye-
sian meta-analysis models to combine the evidence. Given the
heterogeneity between the studies identified by Pirozzo et al.,
random effect models are described here. The frequentist meta-
analyses are implemented in Stata [32], while the Bayesian models
are estimated in WinBUGS [33].

Meta-analysis models

Recall that a random effects model, where yi is the effect estimate
in study i and σi

2 is its associated variance, may be written by

y N N

y

i i i i i i
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where qi is the true effect in study i, t2 represents the estimate of
between-study heterogeneity and m is the pooled effect [10]. The
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Figure 1 Mean difference in weight loss between treatment and
control group from the Pirozzo et al. meta-analysis (vertical lines
indicate � standard errors of each estimate).
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amount of between-study heterogeneity can be investigated using
I2, which assesses the percentage of total variation across studies
that is due to between-study heterogeneity rather than chance [34].

In a Bayesian context, prior distributions are placed on the
overall effect, m, and the estimate of between-study variance, t2

[35]. We first consider vague prior distributions, so that a Bayesian
random effects meta-analysis model can be given by

y N N

N N
i i i

i

∼ ∼
∼ ∼

θ σ μ
θ μ τ τ τ

, ,

, , ,
.

2

2

0 100000

0 100 0

( ) ( )
( ) ( ) >

(2)

The sensitivity of these prior distributions is assessed in a later
section. The WinBUGs code used in this paper is available in the
Appendix.

Methods of repeated measures meta-analysis

Five methods for the meta-analysis of repeated measures studies
are described in order of the type of outcome required: effect at a
particular time-point, trend over time or change between time-
points. The methods depend on the type of data available from the
primary studies and the aim of the meta-analysis. A summary of
the aims, models, data requirements and assumptions of each of
these five methods is given in Table 1. We assume that the avail-
able data are all presented in the same format from each primary
study, however, that may not necessarily be the case and we return
to this point in the discussion.

The first method we describe involves the calculation and com-
bination of summary estimates from primary studies at a particular
time-point and is referred to as the relevant time-point meta-
analysis (RTM). This time-point may be chosen for its clinical
importance (and will have been defined before any analyses were
carried out), or as the time-point where most data are available
from the primary studies (although the potential for introducing
bias by defining the relevant time-point after the data are assessed
should be kept in mind [21]). We assume that each study reports
the same type of effect outcome at this time-point, e.g. a mean
effect and some measure of its precision.

The second approach calculates and combines the effect in each
study at either the first or final time-point, regardless of whether
this time-point is different across studies. Thus, any studies that
were excluded from the RTM because they did not report at that
particular time-point will be included in this first/final time-point
meta-analysis (FTM). However, the interpretation and clinical
importance of the resultant pooled estimate may be limited as
the primary studies may have different first/final time-points.
Examples of this approach can be seen in Spittle et al. [36] and
Cahill et al. [37] who both combine study estimates at the final
time-point.

These above two methods only consider one time-point. The
third approach described applies the RTM to all time-points and is
referred to as the all time-points meta-analysis (ATM). There are
many examples of this approach in the literature (see Franz et al.
[38], Tan et al. [39] and Dansinger et al. [40]). The pooled esti-
mate at a time-point can be qualitatively or quantitatively com-
pared with estimates at other time-points (as demonstrated later).
However, assumptions of independence between the data points
may not be valid as some subjects contribute data to pooled esti-
mates at more than one time-point, while others only contribute to
one time-point. Furthermore, this approach may lead to a trend

being observed at the aggregate level, which may not reflect such
a trend at the individual level. This is known as the ecological
fallacy [41].

The fourth method we describe allows some analysis of trend
over time at the study level, as well as at the population level. In
this approach, regression is used to model the outcome over time
and provide a summary of the trend, so we refer to this as the trend
meta-analysis (TM). Various approaches can be taken depending
on the form of the available data. If the primary studies have used
multilevel modelling and report a slope estimate for trend, these
can be combined using the random effects meta-analysis models
defined above where yi is the slope estimate from study i (and σ t

2 is
the associated variance of this estimate). This analysis would
maintain the time dependencies within each study. If, as in the
Pirozzo et al. example, only the means and variances are available
at each time-point a study-specific regression analysis can be
undertaken on these means and the resultant slope estimates com-
bined across studies. To carry out this analysis, the Bayesian
model given in (2) could be extended as follows:

y N N
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∼
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where yit is the observed effect at time-point t in study i, σit
2 is its

variance, qit is the true effect at time-point t in study i, ai and bi are,
respectively, the intercept and slope for the study-specific linear
regression slope, timeit is the time-point in study i at time t (= 0, 6,
12, 18 months in the Pirozzo et al. example), m is the overall trend
and t2 is the variance in trend between studies.

This model allows inclusion of studies that do not contribute to
the trend analysis, but do provide estimates at certain time-points.
This ‘borrowing of strength’ is one advantage of the Bayesian
approach to evidence synthesis [42].

In the final approach, we apply a method that is relevant when
the change between time-points is of interest, and so refer to this
method as the change in time meta-analysis (CTM). Once the
difference between estimates at different time-points in a primary
study have been obtained, the approach follows that given earlier
for the ATM; the difference in means in the primary studies are
combined at each time-point. This could be done in two ways:
where the difference between each successive time-point is calcu-
lated and combined (e.g. Burke et al. [43]), or where the difference
from baseline to each time-point is calculated (e.g. Earl and
Albarracín [44]).

Simulation study

As pointed out in the introduction the correct analysis of repeated
measures studies is complicated by the unit of analysis being the
individual, say, rather than the observation taken on that indi-
vidual. Some primary analyses ignore this structure, so assump-
tions of independence are violated. We simulate repeated measures
IPD for a meta-analysis to demonstrate the impact of assuming
independence across time-points as the dependencies increase
over time at the individual level. Three simple meta-analyses are
simulated, each containing five studies with each study reporting
some continuous measurements on 20 individuals at four time-
points. For simplicity all time-points are the same across the five
studies and there is no missing data. A linear trend was assumed
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for each individual and data were simulated using a random effects
model. The three meta-analyses differ in how well the data fit the
linear regression model, i.e. the variability around the regression
line for each of the meta-analyses. These simulated datasets are
meta-analysed in three ways: by calculating the slope estimate
from the pooled means at each time-point (i.e. using the ATM
approach), by calculating and combining the study-specific slope
estimates based on the means at each time-point in each study (i.e.
using the TM approach), and by carrying out an IPD analysis using
a 3-level hierarchical model.

Results

RTM

The aim of this approach is to combine the available evidence at
one particular time-point. Pirozzo et al. [22] did not define a clini-
cally important time-point but for illustration we define 6 months
as the time-point of interest. This choice has the immediate effect
of excluding two of the six studies from the meta-analysis as they
did not report at 6 months. The mean differences in weight loss
between treated and control groups reported in each study at 6
months were combined using equation (1). The mean differences
from each study as reported in Pirozzo et al. and the overall mean
and associated 95% CIs are shown in Fig. 2. The pooled estimate
at the 6 month time-point is 1.72 (95% CI: -1.38, 4.83), the wide
95% CI reflects the variability between study effects and the fact
that only four estimates are being combined. In this meta-analysis,
I2 is estimated to be 86% (95%CI: 66, 94), indicating large
between-study heterogeneity [34].

FTM

We now consider a meta-analysis of the final time-point with the
Pirozzo et al. example. Six months is the final time-point for one
study, 12 months for two studies and 18 months for the remaining
three studies. The observed study effects and pooled effect, m, are
shown in Fig. 3. The pooled effect from this meta-analysis is

slightly larger and less variable than that of the previous meta-
analysis (Fig. 2).

As mentioned, the studies have different final time-points and
although the statistical heterogeneity may be somewhat smaller
(even though it is still high) in this meta-analysis (I2 = 80%; 95%
CI: 56, 91) compared with the RTM, the clinical heterogeneity
may also be quite large making the pooled value difficult to
interpret.

ATM

This method in which each of the time-points reported in the
primary studies is considered separately is the approach reported
by Pirozzo et al. in their meta-analysis. Our re-analysis of the data
at each time-point using the frequentist model in (1) is shown in
Fig 4.

The pooled estimates have a great deal of uncertainty associated
with them owing to the small number of studies in these meta-
analyses and the variability between the studies; the I2 estimate
ranges from 75% to 91% for the three pooled effects. The results
of the Bayesian meta-analysis model [equation (2)] are very
similar, except that, as expected, there is more variability associ-
ated with the Bayesian pooled estimates: 1.72 [95% credibility
interval (CrI): -4.07, 7.59] at 6 months; 1.04 (-3.18, 5.24) at 12
months; 3.63 (-5.79, 13.26) at 18 months.

A quantitative comparison of these estimates was undertaken by
fitting a regression model to the pooled estimates at each time-
point. In Fig. 5, the pooled estimates from the ATM are plotted
alongside the slope estimate from an unweighted linear regression
model which has been forced through the origin (as there is no
difference in weight loss at 0 months). The slope estimate based on
these three pooled estimates from the frequentist analysis is 0.18
(0.07, 0.28) suggesting an increase over time in the difference in
weight loss between controls and treated subjects, i.e. with con-
trols losing more weight than treated subjects as time goes on. The
slope estimate from the Bayesian analysis is very similar: 0.18
(0.09, 0.26).

If the intercept is allowed to be non-zero the slope estimate
(95% CI) from a frequentist analysis suggest that there is little

Mean difference

–4 –2 0 2 4 6 8 10

Baxter et al.

Harvey-Berino

Lean et al.

McManus et al.

Pooled effect 1.72 (–1.38, 4.83)

Figure 2 Observed and pooled estimates in rel-
evant time-point meta-analysis (RTM).
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evidence of a time trend: 0.17 (-0.13, 0.47). (The results of a
Bayesian analysis are similar to this.)

TM

The TM allows assessment of trend at the study level, as well as at
the population level. For the Pirozzo et al. meta-analysis, only the
means and variances at each time-point are available, so equa-
tion (3) is used to calculate and combine study-specific slope esti-
mates to assess trend over time where the slopes are forced through
the origin. The study-specific estimates are shown in Fig. 6, with a
pooled slope estimate (95% CrI), m, of 0.15 (-0.12, 0.42) overlaid
(the shaded area). From this analysis of the data, the probability
that the slope is greater than zero, P(m > 0), is 0.90.

CTM

The CTM focuses on the change between estimates at successive
time-points. Here we again define the mean difference in weight
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Figure 5 Pooled estimates at each time-point and associated regres-
sion slope from a Bayesian analysis of the data.

Mean difference

–6 –4 –2 0 2 4 6 8 10

Baron et al.

Pascale

Baxter et al.

Harvey-Berino

Lean et al.

McManus et al.

Pooled effect 2.19 (–0.26, 4.65)

Figure 3 Observed, shrunken and pooled esti-
mates in final time-point meta-analysis (FTM).

Mean difference

–6 –4 –2 0 2 4 6 8 10 12

6 month time-point

12 month time-point

18 month time-point

Baxter et al.
Harvey-Berino

Lean et al
McManus et al.

Pooled effect 1.72 (–1.38, 4.83)

Baron et al.
Pascale

Baxter et al.
Harvey-Berino

McManus et al.
Pooled effect 1.06 (–1.62, 3.75)

Baxter et al.
Harvey-Berino

McManus et al.
Pooled effect 3.66 (–1.84, 9.15) Figure 4 Observed and pooled estimates at (1)

6 months, (2) 12 months, and (3) 18 months
follow-up for the all-time points meta-analysis
(ATM).
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loss between control and treated subjects at 0 months to be
zero and consider four different values for the standard deviation at
time zero (SD0) in each primary study: SD0 = 0.001; SD0 = 1;
SD0 = max(SDt; t = 1, . . . , 3); SD0 = 1.2max(SDt; t = 1, . . . , 3).
The different values had little impact on the results of the meta-
analyses, so we report here the results where SD0 = 0.001.

Only three studies contribute to this analysis. The results of a
frequentist analysis suggest that there is greater difference

between the mean weight loss of the control and treated groups
between 12 and 18 months with controls losing more weight (see
Table 2). As can be seen, however, there is a great deal of between-
study heterogeneity.

Violating the independence assumption

In the analysis of the Pirozzo et al. meta-analysis, the Bayesian
slope estimate based on the pooled means at each time-point (from
the ATM) is slightly larger and much more precise (0.18; 95% CrI:
0.09, 0.26) than the Bayesian slope estimate based on the pooled
slopes across studies (calculated in the TM) (0.15; 95% CrI -0.12,
0.42). This trend is also seen in the results of the simulation study.
Table 3 shows that the slopes based on the pooled estimates at each
time-point (ATM approach) are the most precise estimates. The
precision of the slopes based on the study-specific slope estimates
(TM approach) are of a similar magnitude to the precision of the
IPD calculated pooled slopes, although there is greater variability
in the estimate from the IPD meta-analysis. These results suggest
that violating the independence assumption when meta-analysing
repeated measures data can lead to estimates of effect that appear
to be more precise than the whole evidence suggests. With this in
mind, it would be more appropriate to calculate a slope (if that is
the outcome of interest) by pooling the study-specific slope esti-
mates based on the mean measurements at each time-point within
the individual studies, rather than pooling data across studies at
each time-point and then calculating the slope estimate. In other
words, estimating a trend based on a TM is preferred to calculating
a trend based on an ATM.

Sensitivity of prior distributions in
Bayesian analysis

For the TM approach described in this paper, the sensitivity of the
prior distribution placed on t2 in equation (2) was assessed. The
following three alternative prior distributions were investigated:
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Figure 6 Study-specific (dashed) and pooled slope (bold) estimates
with 95% CrI displayed. CrI, credibility interval.

Table 2 Change in effect at different time-points for the Pirozzo et al.
meta-analysis

Change-point Median estimate (95% CrI) I2

1 (t1 - t0) 1.93 (-2.66, 6.53) 100%
2 (t2 - t1) -0.68 (-1.25, -0.10) 81%
3 (t3 - t2) 2.41 (-1.56, 6.38) 100%

CrI, credibility interval.

Table 3 Application of different repeated measures Bayesian meta-analysis methods to the simulated datasets

Repeated measures meta-analysis method
Mean (standard deviation)
slope estimate

Median (95% CrI)
slope estimate

Estimate of between-
study heterogeneity

Dataset 1
Slope estimate based on results of ATM 1.36 (0.29) 1.36 (0.79, 1.93) NA*
Slope estimate from TM 1.38 (0.44) 1.37 (0.58, 2.20) 0.15
Individual participant analysis 1.40 (0.44) 1.40 (0.55, 2.26) 0.42

Dataset 2
Slope estimate based on results of ATM 1.33 (0.26) 1.33 (0.82, 1.84) NA*
Slope estimate from TM 1.36 (0.41) 1.35 (0.61, 2.15) 0.15
Individual participant analysis 1.39 (0.43) 1.39 (0.57, 2.23) 0.31

Dataset 3
Slope estimate based on results of ATM 1.31 (0.25) 1.31 (0.83, 1.80) NA*
Slope estimate from TM 1.34 (0.39) 1.33 (0.63, 2.11) 0.15
Individual participant analysis 1.38 (0.42) 1.38 (0.58, 2.20) 0.30

ATM, all time-points meta-analysis; CrI, credibility interval; TM, trend meta-analysis.
*An estimate of between-study heterogeneity cannot be obtained with this analysis as the slope is calculated from the pooled means at each
time-points (between-study heterogeneity at each time-point can, however, be obtained).
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The posterior means of the pooled effect were unchanged for
these different prior distributions (results not shown). However,
the half normal prior (as used in the original analysis) and the
uniform prior gave estimates of the between-study heterogeneity
parameter, t2, that were greater than those obtained from either of
the gamma prior distributions. Not surprisingly, these larger esti-
mates of t2 lead to wider posterior intervals around the pooled
estimates for the half normal and uniform prior distributions. The
sensitivity of the between-study heterogeneity estimate is expected
given the relatively few data in this meta-analysis and the conse-
quent influence of the prior. Nevertheless, the general conclusions
are robust to changes in the prior distribution placed on t2.

Discussion
In this paper, we have examined a number of approaches for the
meta-analysis of repeated measures studies. These approaches
differ in terms of the type of result obtained (e.g. effect at a
particular time-point, trend over time, change between time-
points) and the data needed for the analysis (e.g. IPD, means, slope
estimates). These differences and the specific research question of
the meta-analysis will ultimately lead to the choice of method to
use. In an ideal world, one would want to use the IPD from each
study. Difficulties in obtaining the full IPD for a meta-analysis
limit the applicability and generality of analyses; if IPD and the
more commonly seen ‘aggregate data’ from studies are available,
these can also be combined [45].

The methods described in this paper can be generalized to other
modelling scenarios, for example, fixed effects rather than random
effects meta-analysis models and more complex hierarchical meta-
analysis models.

A number of the meta-analysis approaches described in this
paper use the observations as the unit of analysis, not the individu-
als. This is also a criticism often levelled at analyses of primary
repeated measures studies [46]. Often the data regarding the indi-
viduals is not available for a meta-analysis, so it is difficult to carry
out the meta-analysis with the individual as the unit of analysis.
Hence, this assumption may often be violated, which may lead to
deflated variance estimates and consequently biased pooled mean
estimates.

In the illustrative meta-analysis of Pirozzo et al. [22], only six
studies were included, and for some of the meta-analysis
approaches only three studies were applicable. It is difficult to say
how many studies are too few for a meta-analysis, although a
number of authors have suggested a minimum of 10, particularly
for assessment of between-study heterogeneity or publication bias
[21,47]. In a Bayesian framework, the lack of data will mean that
priors that are intended to be vague may actually be more infor-
mative than planned. With this in mind, the sensitivity of ‘vague’
priors should be assessed, especially when multilevel models are
being considered [48]. Our sensitivity analysis indicated that the
prior distributions placed on the between-study heterogeneity
parameter in the TM approach, t2, could affect the estimate of
between-study heterogeneity, but in this example, they had little
impact on the pooled estimate obtained.

As the aim of this paper was to compare methods, it was
assumed that the data from studies for a meta-analysis are all
reported in the same style, for example, in Pirozzo et al. [22],
means and standard deviations at the time-points were reported. In
general, different studies might report different types of summary
estimates; for instance, some studies may model the time trend
using one particular model, while another study may use a differ-
ent model. The question of comparability of study estimates
obtained from different models is problem specific. Further work
is required to examine how the different types of summary esti-
mates from each repeated measures study could be meaningfully
combined in a meta-analysis.

We have not considered the important issue of publication bias.
If one summary estimate from each study is used for a meta-
analysis, say a RTM, FTM or TM, then current methods for detect-
ing and assessing publication bias [49] and between-study
heterogeneity [34,41] may be used. A problem arises when more
than one summary estimate from a study is included in the meta-
analysis. In the Pirozzo et al. paper, only six studies were involved,
so publication bias and between-study heterogeneity would be
difficult to assess anyway. However, as techniques develop for the
synthesis of repeated measures studies, these and other important
aspects of meta-analysis should not be overlooked.
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Appendix: WinBUGS code
Equation (2)
Used for the all time-point meta-analysis (ATM).

model{
for(i in 1:N){

prec[i] <–1/(sd_diff[i]*sd_diff[i])
mean_diff[i] ~ dnorm(theta[i],prec[i])
theta[i] ~ dnorm(psi, tau)
}

psi ~ dnorm(0, 0.00001)
tau <–1/var
var <–pow(std, 2)
std ~ dnorm(0, 0.01)I(0,)
pr.gr.zero <–step(psi) - equals(0, psi)
}

}

Where mean_diff, sd_diff and N are the data.

Equation (3)
Used for the trend meta-analysis (TM) when study-specific slope estimates are not reported in each study.

model{
for(i in 1:N){

for(j in 1:T[i]){
mean.diff[i,j] ~dnorm(theta[i,j],prec[i,j])
prec[i,j]<–1/(sd_diff[i,j]* sd_diff[i,j])
theta[i,j]<–beta[i]*time_period[i,j]
}

beta[i] ~ dnorm(beta.p, tau)
}

beta.p ~ dnorm(0, 0.00001)
tau <–1/var
var <–pow(sd,2)
sd ~ dnorm(0, 0.01)I(0,)
pr.gr.zero <–step(beta.p) - equals(0, beta.p)
}

Where mean_diff, sd_diff, time_period, N and T are the data.
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