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Markov Chain Monte Carlo (MCMC)

● When we talk about Bayesian density and Bayesian

inference, it is better if we know Markov Chain Monte

Carlo (MCMC).

● MCMC is a different model with Variational Inference

(VI)

● The MCMC algorithm aims to generate a sample from a

given probability distribution.
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Markov Chain Monte Carlo (MCMC)

MARKOV CHAIN MONTE CARLO

Monte Carlo is part of method’s name is sampling purpose.

Markov Chain is part come from the way we obtain 

samples. 
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Markov Chain

The conditional probability distribution of the future state 

of a process depends only on the present state, not on the 

sequence of events that preceded it.
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Markov Chain
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Cute and ladders



The board consists of 100 numbered squares, with the objective being 

to land on square 100. The roll of the die determines how many 

squares the player will advance with equal probability of advancing 

from 1 to 6 squares. Each move is only determined the player’s present 

position. However, the board is filled with chutes, which move a player 

backward if landed on, and ladders, which will move a player forward.
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Monte Carlo

● Monte Carlo Experiment or Monte Carlo Simulation.

● An algorithm for obtaining the desired value by performing a simulation 

involving probabilistic choices.

● Sometimes it's not easy to solve problems using algebra.

● For example is estimating value of 𝜋 . ( common example in Monte Carlo 

Simulation)
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Monte Carlo
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Goal : Estimating value of 𝜋 .

Count :
•Dot inside the circle (C)
•Dot inside the square (S)
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Markov Chain Monte Carlo (MCMC)

Several MCMC algorithms are commonly used in research or well-known 

among researchers.

1. Gibbs Sampling Algorithm

2. Metropolis - Hasting Algorithm
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Gibbs Sampling

● The method to generate a sequence of samples from the joint probability 

distribution of two or more random variables.

● This method always accepts all proposals.
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Gibbs Sampling

● Gibbs sampling for a Bivariate Normal target distribution with correlation 𝜌 :

1. Initialize : 𝑥0, 𝑦0 ≔ 0,0 and set 𝑡 ≔ 0

2. Draw 𝑥𝑡 from the conditional distribution 𝑋𝑡| 𝑌𝑡 − 1 = 𝑦𝑡 − 1 ~𝑁(𝜌𝑦𝑡 −

1, 1 − 𝜌2)

3. Draw 𝑦𝑡 from the conditional distribution 𝑌𝑡|(𝑋𝑡 = 𝑥𝑡)~𝑁(𝜌𝑥𝑡, 1 − 𝜌2)

4. Increment 𝑡 ≔ 𝑡 + 1

5. Return to step 2
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Gibbs Sampling
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• Set first iteration of our Gibbs 
sampler with ρ equal to 0.9.

• Then set (xₒ, yₒ) to (0,0).

https://towardsdatascience.com/gibbs-sampling-explained-b271f332ed8d



Gibbs Sampling

● We draw from the conditional distribution 

of X given Y equal to 0.

● Condition X given Y

𝑋1 | 𝑌0 = 0 ~ 𝑁 (0 ∙ 𝜌, 1 − 𝜌2)

● The result is – 0.4
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Gibbs Sampling

● We draw from the conditional distribution 

of Y given X equal to -0.4.

● Condition Y given X:

𝑌1| 𝑋1 = −0.4 ~𝑁(−0.4. 𝜌, 1 − 𝜌2)

● The result is - 0.32
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Gibbs Sampling

● The final point for this iteration 

of the Gibbs sampler is (-0.4, -

0.32)
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Gibbs Sampling
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Gibbs Sampling

17https://towardsdatascience.com/gibbs-sampling-explained-b271f332ed8d



Metropolis - Hasting Algorithm

● Instance of Markov Chain Monte Carlo algorithm is Metropolis – Hasting

Algorithm.

● This algorithm also called "random walk", where the distribution is repeatedly

sampled in small steps; independent of the previous step, and so is no

memory ( memoryless ).
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Metropolis - Hasting Algorithm

A politician is campaigning in 7 districts, one adjacent to the other. She

wants to spend time in each district, but due to financial constraints,

would like to spend time in each district proportional to the number of

likely voters in that district. The only information available is the

number of voters in the district she is currently in, and in those that are

directly adjacent to it on either side. Each day, she must decide whether

to campaign in the same district, move to the adjacent eastern district,

or move to the adjacent western.
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Metropolis - Hasting Algorithm

On any given day, here’s how the decision is made whether to move or not:

● Flip a coin. Heads to move east, tails to move west.

● If the district indicated by the coin (east or west) has more voters than the 

present district, move there.

● If the district indicated by the coin has fewer likely voters, make the decision 

based on a probability calculation

20



Metropolis - Hasting Algorithm

● If the district indicated by the coin has fewer likely voters, make the 

decision based on a probability calculation:
○ Calculate the probability of moving as the ratio of the number of likely voters in 

the proposed district, to the number of voters in the current district: P[move] = 

voters in indicated district/voters in present district

○ Take a random sample between 0 and 1.

○ If the value of the random sample is between 0 and the probability of moving, 

move. Otherwise, stay put.
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Metropolis - Hasting Algorithm
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She is in district 4.

1

The prosed move is to 
district 5



Metropolis - Hasting Algorithm
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2

The prosed move is to 
district 6



Metropolis - Hasting Algorithm
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3

The proposed move is 
to district 7



Metropolis - Hasting Algorithm
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4

The proposed move is 
to district 6



Metropolis - Hasting Algorithm

Base on the decision to move on the probability criterion of 6/7. Draw a random 

sample between 0 and 1, if the value is between 0 and 6/7, move. Otherwise, 

stay in district 7.
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Metropolis - Hasting Algorithm
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Perform this procedure many times.
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