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Abstract
Objectives: We provide guidelines for handling the most commonmissing data problems in repeated measurements in observational studies
and deal with practicalities in producing imputations when there are many partly missing time-varying variables and repeated measurements.

Study Design and Setting: The Maastricht Study on long-term dementia care environments was used as a case study. The data contain
84 momentary assessments for each of 115 participants. A continuous outcome and several time-varying covariates were involved contain-
ing missing observations varying from 4% to 25% per time point. A multiple imputation procedure is advocated with restrictions imposed
on the relation within and between partially missing variables over time.

Results: Multiple imputation is a better approach to deal with missing observations in both outcome and independent variables.
Furthermore, using the statistical package R-MICE, it is possible to deal with the limitations of current statistical software in imputation
of missing observations in more complex data.

Conclusion: In observational studies, the direct likelihood approach (i.e., the standard longitudinal data methods) is sufficient to obtain
valid inferences in the presence of missing data only in the outcome. In contrast, multiple imputation is required when dealing with partly
missing time-varying covariates and repeated measurements. � 2018 Elsevier Inc. All rights reserved.
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1. Introduction

A major advantage of analyzing longitudinal data over
cross-sectional data is the possibility to describe individual
profiles over time. Because characteristics of subjects may
vary over time, measuring the outcome and time-varying
characteristics of the subjects repeatedly enables us to bet-
ter evaluate the effect of them on the outcome for an arbi-
trary subject [1]. There are many examples, for instance in
health care practice, that demonstrate the merits of longitu-
dinal data [2e4]. However, analyzing longitudinal data
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typically needs advanced approaches when compared to
standard cross-sectional data.

Missing data are one of the central problems that one en-
counters during the analysis of longitudinal data. Subjects
may drop out due to, for example, sudden severe illness,
death, or inability to locate by the researchers, or a measure-
ment may be missing due to reasons that are unknown to or
known but not measured by the researcher. Missing data are
a unique challenge all researchers face from time to time,
especially those in health care practice [5]. As research de-
signs have become more complex and often multicentered,
the problem of missing data has become much more com-
mon and complicated. Therefore, statisticians have been ad-
dressing this problem over decades and developed solutions
that can stand the scrutiny of statistical theory [6e8].

Popular solutions include excluding from the analysis
those subjects who have missing observations (i.e., com-
plete cases analysis), simple substitution methods, and
advanced approaches like the direct maximum likelihood
and multiple imputation (MI) [9]. Although applied re-
searchers may know the existence of these methods, they
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What is new?

Key findings
� When analyzing longitudinal data with missing ob-

servations, two situations require different ap-
proaches. If the missing data are in the outcome
only (and the independent variables are fully
observed), the direct likelihood method will pro-
duce unbiased estimates under the missing at
random assumption, and thus multiple imputation
is not necessary. If, on the other hand, some of
the independent variables contain missing observa-
tions too, imputation of missing data is then
advantageous.

� A problem arises if there are more columns (vari-
ables per time point) than rows (subjects) when
the data are constructed for the imputation purpose
(i.e. the data are converted to the wide format).
With no restrictions, imputing missing data cannot
be performed and any software packages will sim-
ply crash or stop imputing. Therefore extra restric-
tions should be imposed while preserving as much
as possible the correlation structure of the data,
given the imputation model.

� The R- MICE package is useful to successfully
deal with such complex longitudinal data.

What this adds to what is known?
� Analysis of the aforementioned complex observa-

tional longitudinal data, with many repeated mea-
surements and partly missing time-varying
covariates, can be analyzed using the R-MICE
package by imposing extra restrictions on the rela-
tion within partly missing variables over time.

� When missing data are in the independent vari-
ables, the direct likelihood removes subjects with
missing observations, which results in biased
estimates.

What is the implication and what should change
now?
� Care should be taken when analyzing longitudinal

data with partly missing observations in the covari-
ates. Moreover, standard software like SPSS and
SAS may fail to deliver estimates if there are many
time points and time- varying covariates. The
guidelines as proposed in the article may be useful
for a successful analysis.

may be less aware of the advantages and disadvantages of
them depending on the design and underlying missing data
mechanisms. Moreover, longitudinal data may have many
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time points and often contain time-varying independent
variables with missing observations [10] so that imputation
of missing data using standard software like SPSS and SAS
may fail in such complex designs.

The purpose of this article is to provide researchers with
practical guidelines to handle the most common missing
repeated measurements data problems in observational
studies. Many researchers, for example, in health care
research and health services, use standard techniques as
offered in software like SPSS without realizing the prob-
lems that may occur in their particular data. We specifically
aim to address

� The important problem of how to analyze longitudi-
nal data if there are missing observations in the
outcome only and/or if missing observations are
extended to independent variables too. These two sit-
uations require different approaches.

� Practicalities in producing imputations when there are
many time-varying variables and repeated measure-
ments, such that the imputation task will be impos-
sible without making extra restrictions.

� The difficulties with common and ready-to-use impu-
tation routines in statistical packages SPSS, SAS,
and R.

In Section 2, we introduce the Maastricht Study on long-
term dementia care environments (MLTD) as a case study
and elaborate on its missing data structure. Using this struc-
ture as a reference, several potential problems have been
considered. In Section 3, a brief review of possible solu-
tions to handle missing data is given. Moreover, a limited
simulation study is conducted to further elaborate on
performance of different methods based on bias and
coverage aspects of the estimates. In Section 4, an outline
is given about the statistical analysis of the MLTD study.
In Subsection 4.1, tips and tricks are given of how to imple-
ment the state-of-the-art method to handle missing observa-
tions. In Subsection 4.2, we describe the software
limitations by comparing SPSS, SAS, and R-MICE. In
Section 4.3 the suggested approach to deal with missing
observations is applied to the MLTD study and the results
are presented. In section 5, the article ends with a
discussion.
2. Missing data structure of the MLTD study

As a motivation example, the MLTD study has a longi-
tudinal design aiming at investigating the effect of innova-
tive dementia care environments (i.e., small scale,
homelike) in comparison with traditional nursing homes
(large scale) on residents’ daily life [3]. In this case study,
we are interested to compare the mood between the elderly
living in traditional large-scale wards (LSW 5 1; 29 wards)
and innovative small-scale wards (LSW 5 0; 86 wards). A
randomized observation schedule was performed, such that
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every participant was observed for 1 minute during every
20-minute period within a 4.5-hour observation block
(there was a half hour break in each block). Each partici-
pant was then observed on 7 days: two weekday mornings
(07:00e11:30), two weekday afternoons (11:30e16:00),
two weekday evenings (16:00e20:30), and one Saturday
afternoon (11:30e16:00). In total, 12 (observation minutes
per block in a day) � 7(observation days) 5 84 momentary
assessments were recorded per participant. We focus on
mood and engagement in activity (activity), which were as-
sessed by the Maastricht Electronic Daily Life Observation
tool [11]. Mood was observed using a 7-point rating scale,
ranging from 1 5 great signs of negative mood to 7 5 very
high positive mood, and the variable activity measures, for
example, household activity, or musical activity. The
MLTD study is an example where there are many missing
observations in the outcome (mood) and in the time-
varying independent variables (like activity engagement).
Supplementary Table 1 shows the frequency of missing
data across dayparts and time.

The main reason for missing data was the residents’
inability to locate for observations (e.g., they were on a
trip with family, had health care appointments, or were
in their private rooms and thus unable to be observed).
The way that researchers should deal with missing data
to obtain unbiased estimates depends on the statistical
model that they want to analyze and the type of missing
data mechanism, which will be elaborated in the next
section.
3. Methods

Following Rubin [6], three types of missing data mech-
anism are missing completely at random (MCAR), missing
at random (MAR), and missing not at random (see
Supplementary Material for details).
3.1. Solutions to handle missing data

Throughout the years, many solutions have been advo-
cated to deal with missing data. In this article, we have
summarized the most popular methods including complete
case analysis (CCA), available cases (ACs), mean substitu-
tion (MS), missing indicator method (MIM) and last obser-
vation carried forward together with the state-of-the-art MI
[7,12,13]. Which method is preferred depends on the design
of the study and the underlying missing data mechanism.
Here, we concentrate on observational studies and will
argue that some popular methods are not recommendable
for observational longitudinal designs.

The usual way to compare the performance of the
different strategies is via a Monte Carlo simulation study
because the true correlations and effects are known. We
have therefore performed a limited simulated longitudinal
study to show the consequence of choosing a strategy on
parameter estimates. In short, four scenarios were
investigated:

� Missing observations on both outcome and indepen-
dent variables under MCAR

� Missing observations only on the outcome under
MAR

� Missing observations only on the independent vari-
ables under MAR

� Missing observations on both outcome and indepen-
dent variables under MAR

Details of the simulation study are provided in the
Supplementary Material. It should also be noted that when
performing MI, we put some extra restrictions comparable
to that of the MLTD data to evaluate our proposed restricted
MI procedure (see Section 4.1 for more details). Moreover,
we emphasize that the results of this simulation study may
not be applied to experimental designs.
3.2. Na€ıve methods

3.2.1. Complete case analysis
When using CCA, all cases with missing values are

deleted. This approach is default in statistical software
packages, which makes its use very easy and unnoticed.
It can be safely used under MCAR because restricting the
analysis to only those participants with no missing observa-
tions can be considered as taking another random sample
from the original population [14]. However, as opposed to
cross-sectional designs, the CCA can produce biased esti-
mates under MAR. This is confirmed in the simulation
study because the CCA only produced unbiased estimates
under MCAR (see Table 1 scenario 1). Another point is that
throwing away information leads to less efficient results
when adopting the CCA. For instance, removing 50% of
participants in the MLTD study may have a large impact
on variance estimates as well as statistical power.
3.2.2. AC analysis
In this approach, each statistic will be calculated using

the observed values of the relevant variable(s). If only the
outcome has missing observations, the AC implies the
direct likelihood approach. Consequently, AC gives unbi-
ased estimates (as opposed to CCA) [15]. In contrast, when
missing data are in the independent variables, the AC
removes subjects with missing observations, which results
in biased estimates (as the remaining subjects are not neces-
sarily a representative of the target population). In the simu-
lation study, the estimates of the regression coefficients
were unbiased when the outcome had missing observations,
while it leaded to biased estimates and lower coverage rates
with missing data in the independent variables (see Table 1
scenarios 2, 3 and 4, particularly for b0).



Table 1. Simulation results from five replications with a sample size of n 5 115 and three repeated measurements

Scenario 1: MCARdx and y missing within total 50% incomplete.

Method

Statistics

95% CI coverage rate of b1
bb0 seðbb0Þ 95% CI coverage rate of b0

bb1 seðbb1Þ
REF 2.01 0.095 0.95 0.50 0.101 0.95

CCA 2.01 0.136 0.95 0.50 0.145 0.95

AC 2.01 0.101 0.95 0.50 0.114 0.95

MS 2.05 0.091 0.90 0.42 0.104 0.88

MIM - - - - - -

LOCF 2.05 0.097 0.92 0.42 0.102 0.87

MI 2.03 0.101 0.95 0.45 0.117 0.93

Scenario 2: MARdy missing with approximately 50% of the outcome variable incomplete

Method

Statistics

95% CI coverage rate of b1
bb0 seðbb0Þ 95% CI coverage rate of b0

bb1 seðbb1Þ
REF 2.00 0.095 0.95 0.51 0.101 0.94

CCA 2.66 0.116 0.00 0.41 0.135 0.88

AC 2.00 0.100 0.96 0.50 0.112 0.94

MS 2.16 0.084 0.55 0.41 0.102 0.86

MIM - - - - - -

LOCF 2.00 0.096 0.95 0.40 0.096 0.82

MI 2.03 0.100 0.94 0.46 0.115 0.95

Scenario 3: MARdapproximately 40% of the independent variables was incomplete

Method

Statistics

95% CI coverage rate of b1
bb0 seðbb0Þ 95% CI coverage rate of b0

bb1 seðbb1Þ
REF 2.00 0.095 0.95 0.50 0.102 0.96

CCA 2.53 0.097 0.00 0.38 0.112 0.80

AC 2.19 0.092 0.45 0.43 0.105 0.90

MS 2.07 0.101 0.92 0.35 0.109 0.72

MIM 1.16 0.123 0.00 0.42 0.097 0.85

LOCF 2.03 0.099 0.95 0.42 0.110 0.89

MI 2.04 0.102 0.94 0.43 0.128 0.93

Scenario 4: MARdapproximately 50% of the dependent and independent variables was incomplete

Method

Statistics

95% CI coverage rate of b1
bb0 seðbb0Þ 95% CI coverage rate of b0

bb1 seðbb1Þ
REF 2.01 0.095 0.95 0.50 0.102 0.95

CCA 2.61 0.106 0.00 0.39 0.123 0.83

AC 2.10 0.097 0.81 0.46 0.110 0.94

MS 2.10 0.093 0.79 0.39 0.106 0.84

MIM - - - - - -

LOCF 2.02 0.097 0.93 0.41 0.104 0.84

MI 2.04 0.101 0.93 0.44 0.122 0.94

Abbreviations: AC, available cases; CCA, complete case analysis; CI, confidence interval; LOCF, last observation carried forward; MI, multiple
imputation; MIM, missing indicator method; MS, mean substitution; REF, reference.

True regression model: Yit 5 2þ 0:5Xit þ ui þ εit ; i5 1;.; 115; t 5 1; 2; 3:

Specification of regression model: Yit 5 b0i þ b1Xit þ εit ;.. i5 1;.; 115; t 5 1; 2; 3:.

110 F.E.S. Tan et al. / Journal of Clinical Epidemiology 102 (2018) 107e114



111F.E.S. Tan et al. / Journal of Clinical Epidemiology 102 (2018) 107e114
3.2.3. Mean substitution
The MS implies each missing value of a variable is re-

placed by the arithmetic mean of that variable. In general,
it can produce biased estimates with lower coverage rates
even under MCAR (see Table 1 scenario 1, where the
coverage rate was equal to 0.88).

3.2.4. Missing indicator method
This method fills missing observations with a fixed num-

ber and then adds a dummy variable to the analysis model
to indicate whether the value of that variable was missing
[16]. The MIM is attractive because of adjusting for an
incomplete independent variable, but it is only valid if the
missing data mechanism is independent of the outcome
conditional on the other independent variables (see
Table 1 scenario 3, where it was badly biased with zero
coverage). Also, it is not designed to handle missing obser-
vations in the outcome.

3.2.5. Last observation carried forward
The last observed value of a variable is used as an

imputed value for the follow-up missed observations in this
method. Despite simplicity, it is severely criticized because
of leading to biased estimates in nearly all situations [9,13]
(see Table 1, all scenarios for bb1).

Because almost all na€ıve methods fail when there are
missing observations in the independent variables, we
briefly discuss MI as an advanced method in the next
section.

3.3. An advanced method: MI

When using MI, each missing entry is replaced with
more than one imputed value, randomly drawn from a dis-
tribution of possible values that is determined using infor-
mation from the data. This leads to multiply imputed data
sets each of which can be then analyzed separately with
standard statistical procedures. Finally, the results of sepa-
rate fits are combined to form a single inference using a
combination rule known as Rubin’s rule [12]. MI also pro-
vides a solution to the problem of imputation uncertainty
existing in the single imputation methods. The standard im-
plementations of MI assume the missing data mechanism is
MAR so that it provides valid inferences under MAR (and
also MCAR) (see Table 1 all scenarios, where MI led to es-
timates with negligible bias and acceptable coverage rates
[|95%]).

It is worth mentioning again that the AC method through
direct maximization of the likelihood function (e.g., the
mixed function in SPSS for longitudinal data) provides
valid results only if the missing data are in the outcome (un-
der MAR assumption) [15]. In fact, the results of MI in
such cases are similar, if a little less efficient, than the
direct likelihood method when the number of imputations
is large ([17], pp. 525). Therefore, there is little gain from
MI in such circumstances, and the direct likelihood analysis
is preferred (as it is relatively easy to do). Nevertheless,
when the missing data appear in the independent variables
(or simultaneously in the outcome and independent vari-
ables), standard procedures like the mixed function in
SPSS, by default, remove cases with missing data in the in-
dependent variables, and therefore, the estimates are biased.
MI, on the other hand, becomes useful because all missing
values are automatically imputed, and multiple (completed)
imputed data sets can then be easily analyzed using the
standard procedures (e.g., the mixed function in SPSS).

Apopular approach, knownasFullyConditional Specifica-
tion (FCS) [18] or chain equation [19], imputes missing data
on a variable-by-variable basis. For each incomplete variable,
an appropriate regressionmodel is specified conditional on the
other variables, that is, an ordinary linear regression for a
continuous variable, a logistic regression for a binary variable,
and amultinomial model for a categorical variable ([13] chap-
ter. 4). Starting from an initial imputation, missing values of
each incomplete variable are imputed in turn using its corre-
spondingmodel and themost updated imputations of the other
variables. Thewhole cycle is iterated a number of times to sta-
bilize the results, assuming the algorithm has converged to a
stationary distribution.

The FCS approach is nowadays popular in practice
because of ease and availability in major statistical software
packages. In the next two sections, the MLTD data will be
analyzed using the MI approach and compared to the CCA
method.
4. Statistical analysis of the MLTD study

To compare the average mood of participants in the
large- and small-scale wards, two models were considered:
a substantive model (i.e., the analysis model) and an impu-
tation model. For analysis, we used a random intercept
model with ‘‘Mood’’ as the outcome and the independent
variables were large-scale ward indicator (‘‘LSW’’ 5 1),
Activity indicator (activity 5 1), part of the day (‘‘Day-
part’’ with seven categories), and the repeated measurement
of the participant within the Daypart (‘‘Time’’ treated as
continuous). All (first order) interactions were also speci-
fied. Note that the model had missing observations in the
covariate ‘‘Activity’’ and interactions with ‘‘LSW’’, ‘‘Day-
part,’’ and ‘‘Time’’.

The model that is used for imputing missing data is
called the imputation model. In general, generating imputa-
tions for missing observations is difficult. Most notably, the
imputation model should contain all the relations between
variables specified in the substantive model [20] to prevent
the congeniality issue (i.e., inconsistencies between the
substantive model and the imputation model). If the analyst
wishes to include interactions and other nonlinear terms in
the substantive model, these should be reflected in the
imputation model too. Failure to include such terms causes
overestimation or underestimation of the parameters.
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Using the FCS approach to impute the missing observa-
tions may raise problems when there are many time-
dependent variables and repeated measurements like in
the MLTD study. These will be elaborated in the next sub-
section and we suggest tips and tricks on how to overcome
such issues.
4.1. Tips and tricks of how to implement MI

An attractive feature of MI is that it can incorporate
additional information (auxiliary variables) available in
the data but usually unused in the analysis. This is very
relevant because the standard implementations of MI as-
sume the missing data mechanism is MAR, and inclusion
of additional variables increases the plausibility of the
MAR assumption. Collins et al. [21] and Schafer [20] rec-
ommended an inclusion strategy to have a richer imputation
model than the substantive model.

The analysis of data with repeated measures using
random-effect models requires the data being in the so-
called ‘‘long’’ format, which implies a separate record is
allocated to each time point per person (i.e., each person
may have multiple records in the data set). However, MI
is conveniently done when the data are in the ‘‘wide’’
format [13]. The latter implies that each person occupies
only one record in the data set, and observations made at
different time points are coded as different columns. This
feature is attractive within the FCS framework because
the imputation model for each incomplete variable is
directly specified from the other variables.

When converting the MLTD data to the wide format, we
encounter a specific computational issue for generating im-
putations. More specifically, the number of repeated mea-
surements in the MLTD study is 84 (i.e., 84 measurements
for Mood, 84 measurements for Activity, 84 measurements
for social interaction, and 84 measurements for the interac-
tion where Activity and social interaction are involved in
the imputation model). As a result, there will be in total more
than 300 time-varying variables in thewide format, while on-
ly 115 subjects are available in the study. Therefore, an impu-
tationmodel that includes all other variables as predictors for
a particular variable cannot be fitted due to overparameteriza-
tion. For example, suppose Mood at time 1 needs to be
imputed. Using the FCS principle, the predictors in the impu-
tation model for Mood at time 1 are as follows: Mood, Activ-
ity, all interactions between Activity and time at time 2, at
time 3, ., at time 84 (there are 84 repeated measurements
if we combine Dayparts and time). The MI procedure in
SPSS (and any other software) will simply crash when such
imputation model is defined. We therefore need to
customize the imputation model such that it is not overfit-
ted and general enough to produce good imputations. We
propose the following procedure. First, it is plausible to as-
sume that all variables at the same time point are related
with each other while unrelated to the other variables in
the other time points. We make an exception that each
variable at a particular time point is a predictor of the same
variable at the other time points (e.g., Mood at time 2,
Mood at time 3, and so on are predictors of Mood at time
1). Hence, the imputation model for Mood at time 1 in-
cludes Activity, social interaction, and the interaction with
LSW at time 1, Mood at time 2, 3, ., 84 as predictors.
Background variables such as sex and location, and the
time-independent variable LSW are included in the imputa-
tion model too. It should be noted that we used the same re-
striction rule when specifying the imputation model in the
simulation study.

Another important issue is the imputation of interaction
terms with missing values. In the MLTD study, for
example, Activity has missing observations, and hence,
its interaction with LSW has missing observations too.
One solution to this is to ‘‘passively’’ impute the interaction
term after imputing the main variable. In the MLTD data,
for instance, the variable Activity can be first imputed
and the imputed value is multiplied by the value of LSW
to from the interaction term. The latter can then be used
as a predictor in the imputation model of another variable
(e.g., Mood). A second approach is to consider the interac-
tion term as ‘‘Just Another Variable’’ (JAV) and impute it
separately. A recent simulation study by White et al. [22]
showed that the JAV method performed better than the pas-
sive imputation approach in many settings. In this study, we
applied JAV to impute the interaction between Activity (so-
cial interaction) and LSW.

It should be noted that the missing values could also be
imputed when the data are in the long format. Nevertheless,
it requires a form of multilevel imputation, which is in turn
more sophisticated and requires experts’ knowledge. For a
gentle introduction of multilevel imputation see Hox, van
Buuren, and Jolani [23].
4.2. Software limitations

In this section, we briefly compare the MI procedure in
SPSS, SAS, and R-MICE. In general, no statistical software
and packages are able to perform MI for the MLTD study
without making extra restrictions as the number of param-
eters in the imputation model exceeds the number of sub-
jects (the so-called overparameterization). SPSS uses by
default the FCS approach to generate imputations. It also
allows including two-way interactions (only for categorical
variables). However, it is unclear how the interactions of
categorical variables with missing values are handled
(i.e., a passive imputation or JAV approach). It is also
possible to add constraints to limit the role of variables dur-
ing imputation, but the procedure is not flexible enough to
customize the variable’s role in the imputation model.

In SAS, the FCS approach can optionally be used, but
the user should control the role of each variable separately
to pose restrictions on imputation models. This is very time
consuming in the MLTD data, for example, as more than



Table 2. Relevant parameter estimates for Ward-effect with and
without multiple imputation

Est LSW 3 effect Substantive model

Time, ward, activity, all first-order interactions as independent

Complete case
analysis (No

multiple imputation)
MI, pooled
estimates

LSW L0.29 (0.46) L0.11 (0.47)

LSW � Daypart 1: Morning 1 0.67 (0.41) 0.54 (0.43)

LSW � Daypart 2: Morning 2 0.89 (0.41) 0.69 (0.45)

LSW � Daypart 3: Afternoon 1 0.19 (0.42) 0.10 (0.46)

LSW � Daypart 4: Afternoon 2 1.12 (0.41) 1.27 (0.44)

LSW � Daypart 5: Afternoon 3 L0.11 (0.41) L0.02 (0.44)

LSW � Daypart 6: Evening 1 �0.60 (0.42) �0.50 (0.44)

LSW � Daypart 7: Evening 2 -

LSW � time �0.10 (0.03) �0.09 (0.04)

LSW � Activity L0.09 (0.26) L0.27 (0.32)

MI, multiple imputation.
Mood � 10 is the outcome.
Standard errors between brackets.
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250 imputation models must be specified separately.
Furthermore, interaction terms are passively imputed.

The R-package MICE imputes missing data using the
FCS approach. To create imputations, users can customize
the role of variables in the so-called predictor matrix. Here,
the predictor matrix regulates each variable’s role in the
imputation model. Interaction terms can also be imputed
either using a passive or the JAV method.
Fig. 1. Estimated difference between large- and small-scale wards
and activity when not imputed and when imputed. NMI, no missing
imputation.
4.3. Results of the MLTD study

Table 2 shows the results of the analysis with and
without MIs. The number of imputations is set to m 5 20
(The R-MICE algorithm for the MLTD data is available
upon request). The outcome is Mood10 (Mood10: mood
multiplied by a factor 10). Because the main interest lies
in a comparison between the large- and small-scale wards,
Table 2 only presents the estimates of the relevant regres-
sion coefficients. Coefficients that are associated with other
variables than LSW or interactions between variables other
than LSW do not contribute to the difference between the
two types of wards and thus can be left out.

As can be seen from the table, the estimates do differ
indicating that the missing data mechanism was not likely to
be MCAR. The most noticeable difference was regarding
LSW ðbbLSW�NOMI5 � 0:29ð0:46Þversus bbLSW�MI5 �
0:12ð0:47ÞÞ, the interaction LSW � Daypart 5
ðbbLSW�Acitivity�NOMI5� 0:11ð0:41ÞversusbbLSW�Acitivity�MI5
� 0:02ð0:44ÞÞ, and the interaction LSW � Activity
ðbbLSW�Activity�NOMI5 � 0:09ð0:26Þversus bbLSW�Activity�MI5
� 0:27ð0:32ÞÞ. The estimated coefficients differed from
each other almost a factor 3 and forLSW�Daypart 5, a fac-
tor 5. Note that the standard errors (between brackets) from
MIwere a bit larger than thosewithoutMI. This is because,
the MI procedure accounts for the uncertainty of the
imputed values. Figure 1 also shows the estimated profiles
perdaypart.Themostnoticeabledifferencewas forevening
1, where the estimated profilewas decreased afterMIwhile
it was increased without MI. The difference between the two
types of wards, however, did not change that much.
5. Discussion

This article presented a proper method to handle complex
observational longitudinal data with many time points in the
presence of missing data in the outcome as well as in the in-
dependent variables. We demonstrated the performance of



114 F.E.S. Tan et al. / Journal of Clinical Epidemiology 102 (2018) 107e114
different methods using a simulation study and the data from
the Maastricht long-term dementia care environments study.

If the missing data are in the outcome only (and the in-
dependent variables are fully observed), the direct likeli-
hood method will produce unbiased estimates under the
MAR, and thus MI is not necessary. If, on the other hand,
some of the independent variables contain missing data
too, imputation of missing data is then advantageous.

Moreover, a problemwith longitudinal data like theMLTD
is the existence of much more columns (variables per time
point) than rows (subjects) when the data are constructed for
the imputation purpose (i.e., the data are converted to thewide
format).With no restrictions, imputingmissing data cannot be
performed and any software/packages will simply crash or
stop imputing. Therefore, extra restrictions should be imposed
while preserving as much as possible the correlation structure
of the data, given the imputationmodel. TheR-MICE package
is useful to successfully deal with such complex longitudinal
data.

In the MLTD study, persons are nested within several
locations so that a three-level model would ideally be
more appropriate. An analysis with a three-level model
ignoring missing data, however, did not reveal a three-
level factor, but it is not known if the same result could
have been obtained had the missing data been imputed
using a multilevel imputation model (preferably a
three-level). Unfortunately, the methodology to deal
with multilevel imputation procedures is still underde-
veloped, and standard packages like SPSS lack such ex-
tensions. A promising future research will be to use
multilevel imputations instead of standard FCS that
may also deal with the problem of higher level imputa-
tion models.
Supplementary data

Supplementary data related to this article can be found at
https://doi.org/10.1016/j.jclinepi.2018.06.006.
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