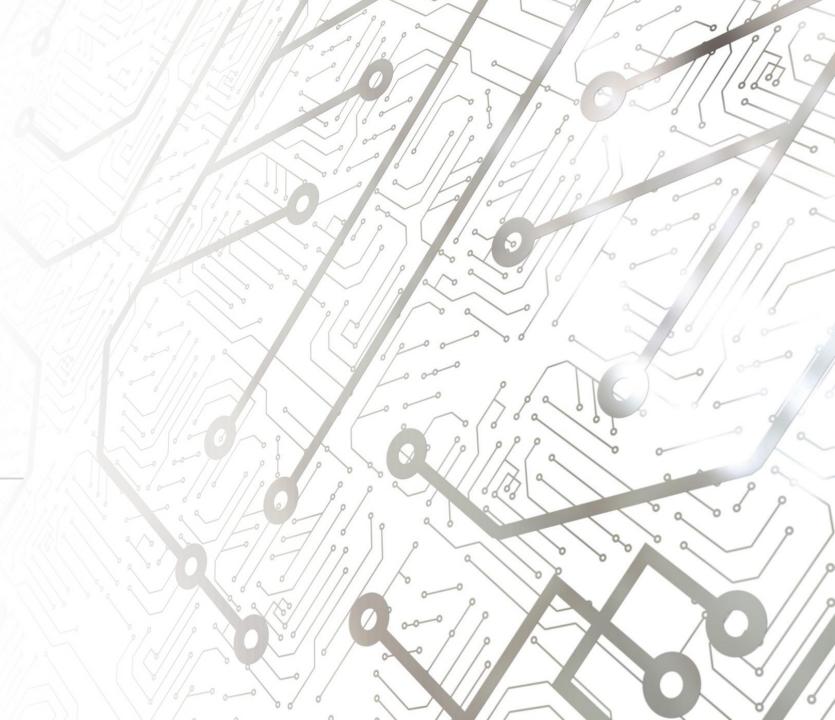
Evaluation of Explainable AI

Sermkiat Lolak , M.D



Promise

- Interpretability VS Explanability
- Evaluation of ML explanation
- Interpretability Method

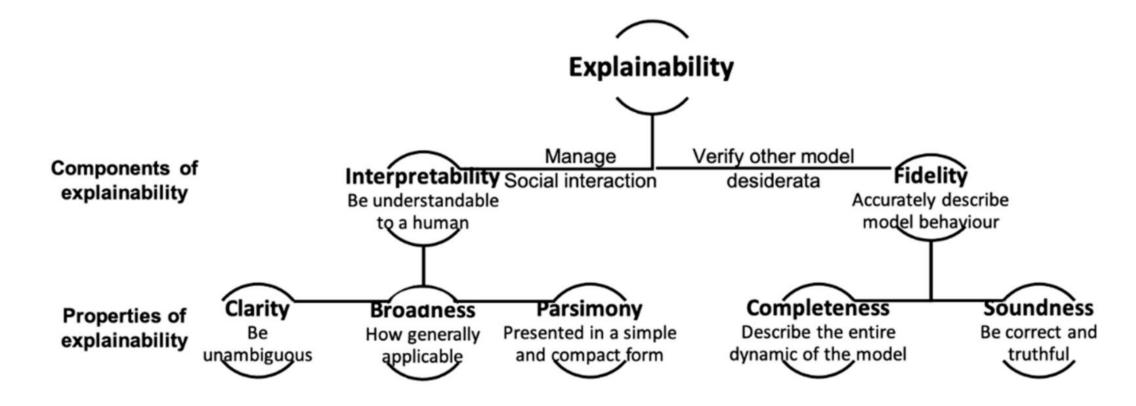
Interpretability VS Explainability

 Interpretability: the ability to explain or to present in understandable terms to a human

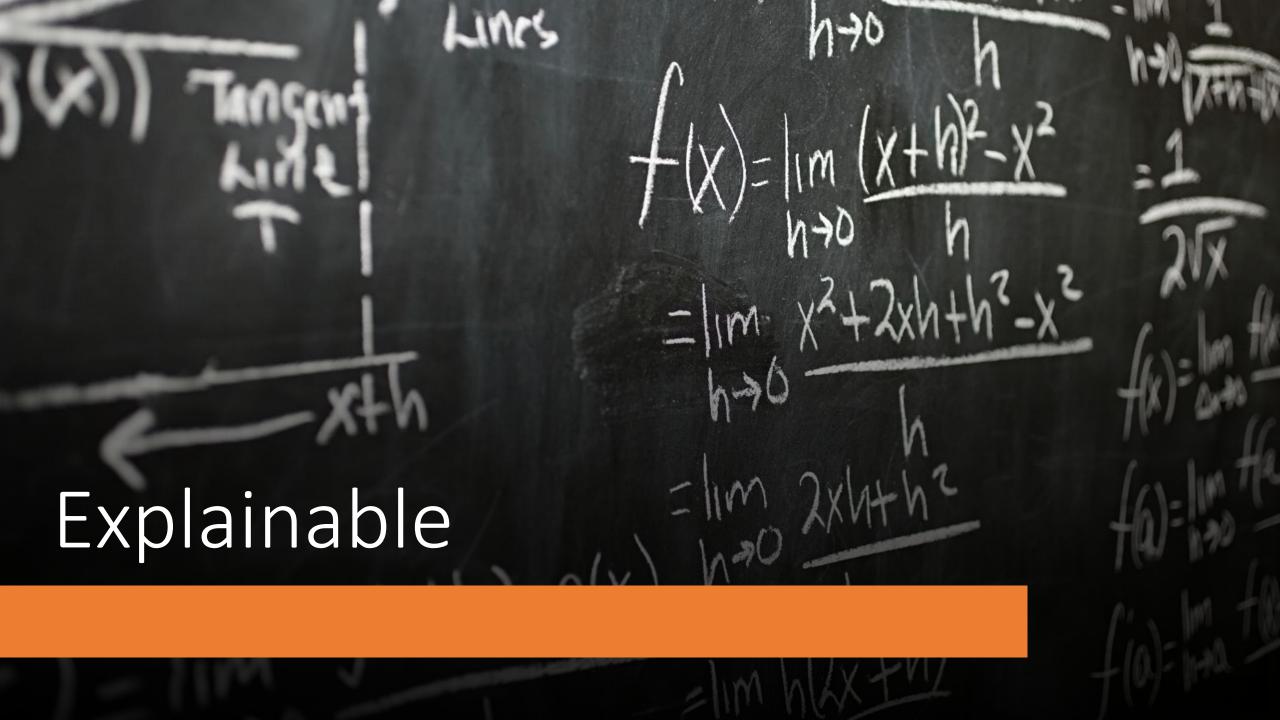
Explainability :

- internal logic and mechanics inside a machine learning system.
- Deeper the understanding that humans achieve in terms of the internal procedures while the model is training or making decisions.

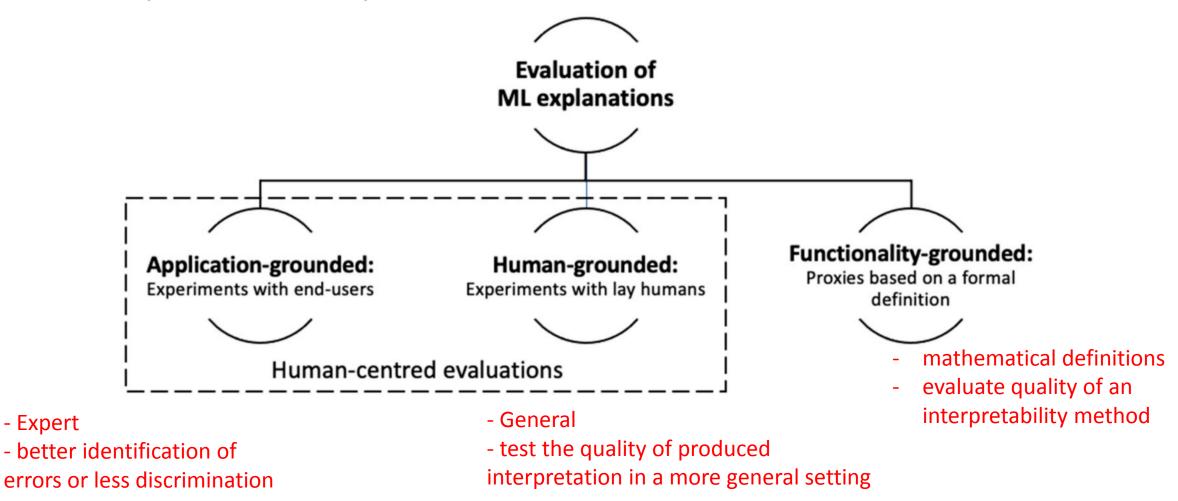
Definition of machine learning (ML) explainability and related properties



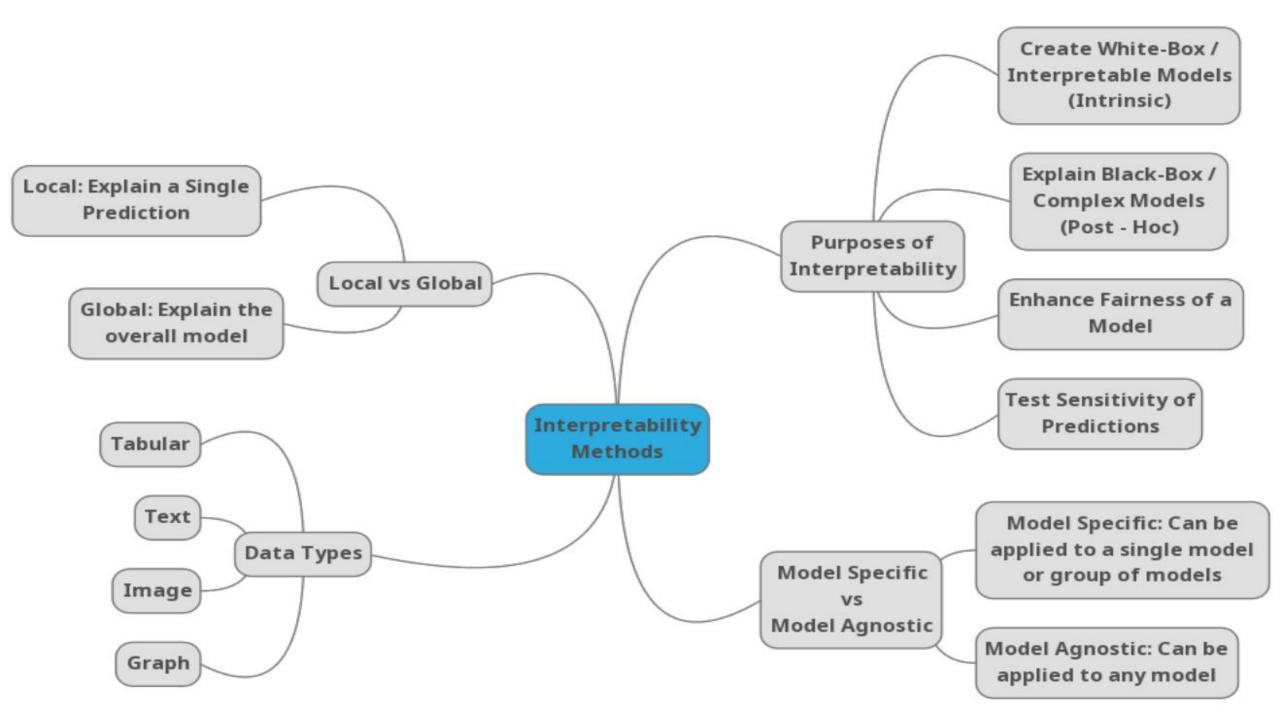
Markus, A.F.; Kors, J.A.; Rijnbeek, P.R. The Role of Explainability in Creating Trustworthy Artificial Intelligence for Health Care: A Comprehensive Survey of the Terminology, Design Choices, and Evaluation Strategies. arXiv 2020, arXiv:2007.15911.



Taxonomy of evaluation of machine learning interpretability



Doshi-Velez, F.; Kim, B. Towards a rigorous science of interpretable machine learning. arXiv 2017, arXiv:1702.08608.



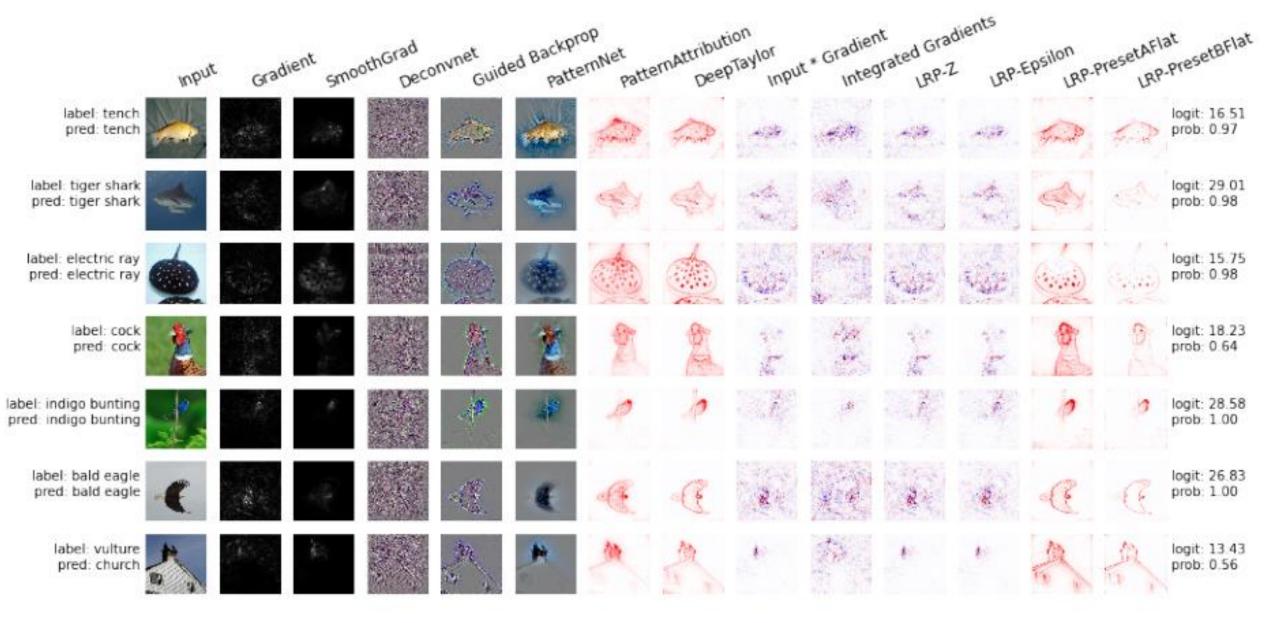
Deep Learning Interpretation

Table 1. Interpretability Methods to Explain Deep Learni

Tool	Category	Local vs. Global	Model Specific v Model Agnostic		
DeepExplain iNNvestigate tf-explain	PH	L	Specific		
Grad-CAM tf-explain	PH	L	Specific		
CAM	PH	L	Specific		
iNNvestigate	PH	L	Specific		
DeepExplain iNNvestigate tf-explain	PH	L	Specific		
DeepExplain iNNvestigate Integrated Gradients tf-explain alibi Skater	PH	L	Specific		
Deep Visualization	PH	L	Specific		

Deep Learning Interpretation

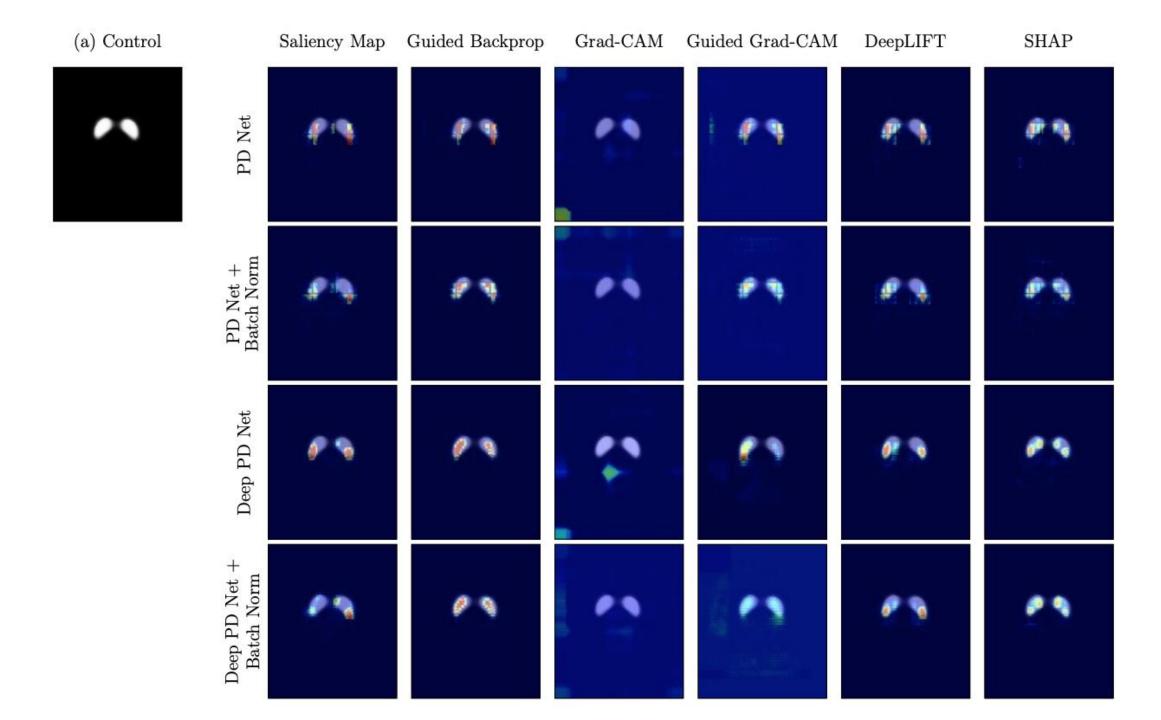
∢ated Gradients tf-explain alibi Skater	PH	L	Specific
Deep Visualization Toolbox	PH	L	Specific
DeepExplain iNNvestigate The LRP Toolbox Skater	PH	L	Specific
DeepExplain DeepLift iNNvestigate tf-explain Skater	PH	L	Specific
iNNvestigate	PH	L	Specific
iNNvestigate tf-explain	PH	L	Specific
tcav	PH	L	Specific
rationale	PH	L	Specific
Grad-CAM++	PH	L	Specific

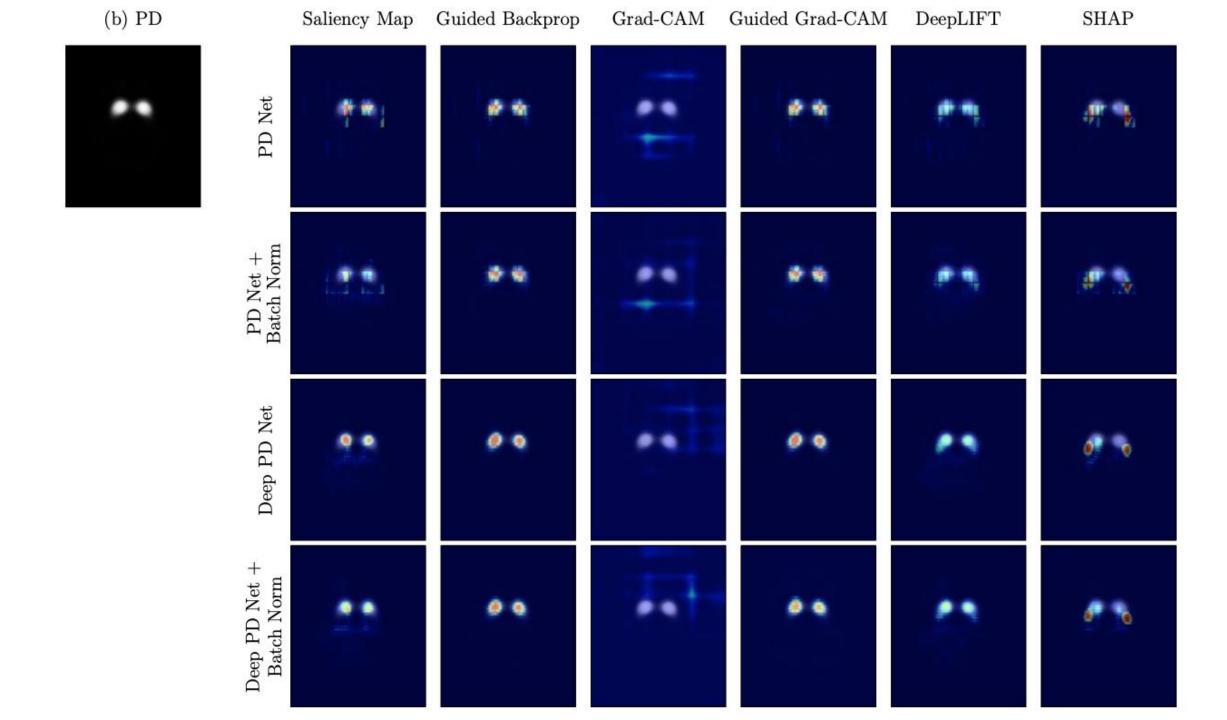


Interpretability Methods to Explain any Black-Box Mode

	Tool	Category	Local vs. Global	Model Specific vs. Model Agnostic	Data Type	Citations/ Year	Year
	lime Eli5 InterpretML AIX360 Skater	PH	L	Agnostic	img txt tab	845.6	2016
•	PDPbox InterpretML Skater	PH	G	Agnostic	tab	589.2	2001
	shap alibi AIX360 InterpretML	PH	L&G	Agnostic	img txt tab	504.5	2017
-	alibi Anchor	PH	L	Agnostic	img txt tab	158.3	2018
	alibi	PH	L	Agnostic	tab img	124.5	2017

Tool	Category	Local vs. Global	Model Specific vs. Model Agnostic	Data Type	Citations/ Year	Year
PyCEbox	PH	L&G	Agnostic	tab	53.3	2015
L2X	PH	L	Agnostic	img txt tab	50.3	2018
Eli5	PH	G	Agnostic	tab	41.5	2010
alibi AIX360	PH	L	Agnostic	tab img	34.3	2018
Alibi	PH	G	Agnostic	tab	23.2	2016
alibi	PH	L	Agnostic	tab img	17	2019
pyBreakDown	PH	L	Agnostic	tab	8.3	2018
pyBreakDown	PH	G	Agnostic	tab	8.3	2018
DLIME	PH	L	Agnostic	img txt tab	7.5	2019
AIX360	PH	L	Agnostic	tab	7	2019
AIX360	PH	L	Agnostic	tab img	3	2019



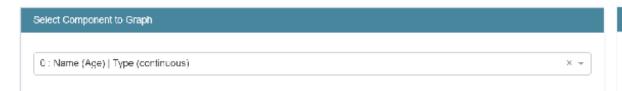


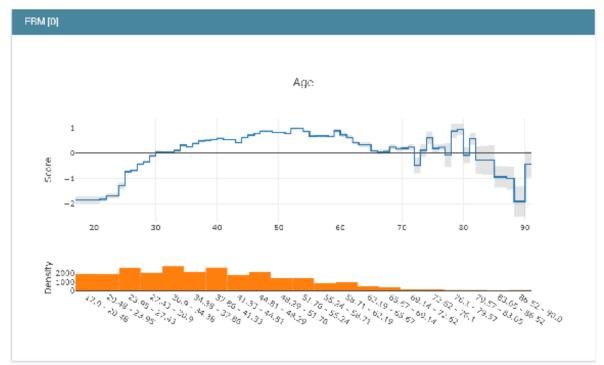
Interpretability Methods to Create White-Box Models.

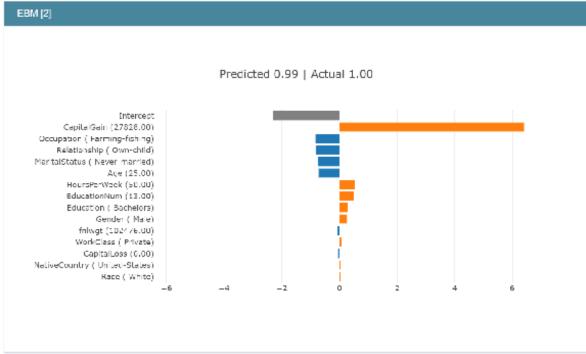
Tool	Category	Local vs. Global	Model Specific vs. Model Agnostic	Data Type	Citations/Year
InterpretML	W	G	Specific	tab	129.5
Slim	W	G	Specific	tab	35.2
AIX360	W	G	Specific	tab	12.3
AIX360	W	L	Specific	tab	12
AIX360	W	G	Specific	tab	5

AIX 360

InterpretML







Interpretability Methods to Restrict Discrimination and Enhance Fairness in Machine Learning Models.

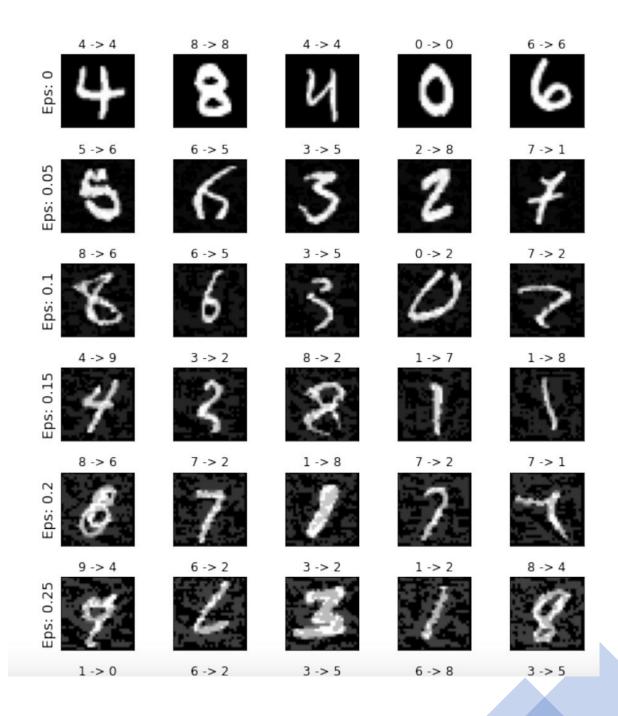
Table 4. Interpretability Methods to Restrict Discrimination and Enhance Fairness in Machine Learning Models.

Ref	Tool	Category	Local vs. Global	Model Specific vs. Model Agnostic	Data Type	Citations/ Year	Year
[92]	equalized_odds_and_calibration fairlearn AIF360	F	G	Agnostic	tab	242.2	2016
[85]	debiaswe	F	L	Specific	txt	216.8	2016
[88]	fairness	F	L	Agnostic	tab	133.4	2012
[72]	Aequitas AIF360 themis-ml	F	G	Agnostic	tab	124.5	2015
[93]	fair-classification	F	G	Agnostic	tab	117.8	2017
[84]	fairness-in-ml	F	L	Agnostic	tab	115.5	2017
[94]	fair-classification	F	G	Agnostic	tab	110.8	2017
[86]	AIF360	F	L & G	Agnostic	tab	94.6	2013
[95]	fairlearn	F	G	Agnostic	tab	94	2018
[77]	AIF360	F	L & G	Agnostic	tab	92.3	2018
[96]	AIF360 GerryFair	F	G	Agnostic	tab	76	2018

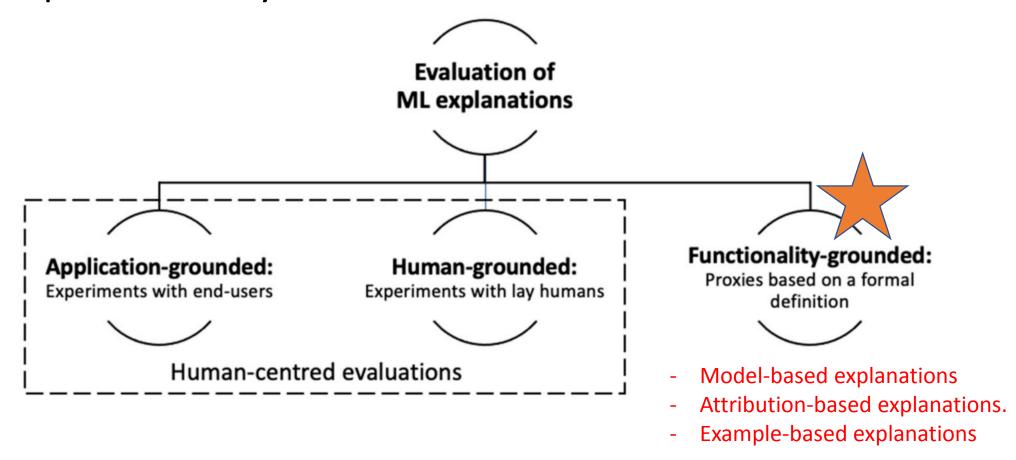
Adversarial Example-based Sensitivity Analysis

 Table 6. Adversarial Example-based Sensitivity Analysis.

Ref	Tool	Category	Local vs. Global	Model Specific vs. Model Agnostic	Data Type	Citations/ Year	Year
[116]	cleverhans foolbox	S	L&G	Agnostic	img	876.4	2014
[115]	cleverhans foolbox	S	L & G	Agnostic	img	727.4	2013
[123]	cleverhans nn_robust_attacks	S	L & G	Agnostic	img	716	2017
[120]	cleverhans foolbox	S	L & G	Agnostic	img	429	2016
[127]	one-pixel-attack-keras	S	L & G	Agnostic	img	409	2019
[117]	cleverhans foolbox	S	L & G	Agnostic	img	392	2016
[119]	cleverhans foolbox	S	L & G	Agnostic	img	381.2	2016
[134]	cleverhans	S	L & G	Agnostic	img	378.8	2017
[137]	influence-release	S	L & G	Agnostic	img	224	2017
[121]	cleverhans	S	L & G	Agnostic	img	181.7	2018
[152]	adversarial-squad	S	L & G	Specific	txt	162	2017
[131]	transferability-advdnn-pub	S	I.& G	Agnostic	imø	148.6	2016



Taxonomy of evaluation of machine learning interpretability



Doshi-Velez, F.; Kim, B. Towards a rigorous science of interpretable machine learning. arXiv 2017, arXiv:1702.08608.

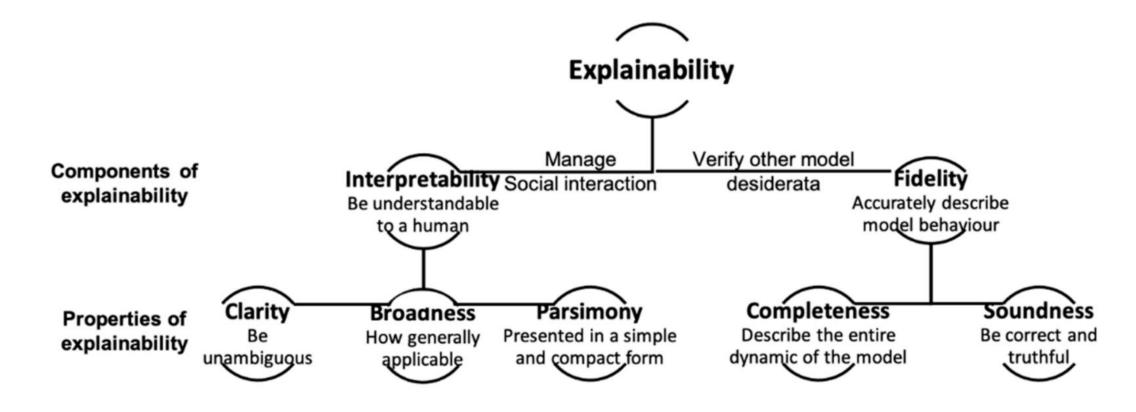
Quantitative metrics for machine learning (ML) explanations

		Properties of Explainability							
Explanation Types	Quantitative	Clarity Kroadness		y	Fide	lity			
	Metrics			Parsimony/ Simplicity	Completeness	Soundness			
	Model size [14,46]			✓					
Model-based	Runtime operation counts [81]			✓					
explanations –	Interaction strength [23,46]			✓					
•	Main effect complexity [46]			✓					
-	Level of (dis)agreement [82]	✓				√			

Quantitative metrics for machine learning (ML) explanations

	Monotonicity [80]					✓
	Non-sensitivity [80,83], Sensitivity [84,85]					✓
Attribution-based	Effective complexity [80]		✓	✓		
explanations	Remove and retrain [86]					✓
,	Recall of important features [33]					√
	Implementation invariance [85]					✓
,	Selectivity [87]					√
,	Continuity [87]	✓				
,	Sensitivity-n [88]					√
,	Mutual information [80]		√	✓		√
Example-based	Non-representativeness [80]			✓	✓	
explanations	Diversity [80]			✓		

Definition of machine learning (ML) explainability and related properties



Markus, A.F.; Kors, J.A.; Rijnbeek, P.R. The Role of Explainability in Creating Trustworthy Artificial Intelligence for Health Care: A Comprehensive Survey of the Terminology, Design Choices, and Evaluation Strategies. arXiv 2020, arXiv:2007.15911.

Contribution

- Selection of interpretability method
- Choose the method to evaluate the ML explanation based on the explanation types and property

