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Abstract 

Background  Multivariate longitudinal data are under-utilized for survival analysis compared to cross-sectional data 
(CS - data collected once across cohort). Particularly in cardiovascular risk prediction, despite available methods of lon‑
gitudinal data analysis, the value of longitudinal information has not been established in terms of improved predictive 
accuracy and clinical applicability.

Methods  We investigated the value of longitudinal data over and above the use of cross-sectional data via 6 distinct 
modeling strategies from statistics, machine learning, and deep learning that incorporate repeated measures for sur‑
vival analysis of the time-to-cardiovascular event in the Coronary Artery Risk Development in Young Adults (CARDIA) 
cohort. We then examined and compared the use of model-specific interpretability methods (Random Survival Forest 
Variable Importance) and model-agnostic methods (SHapley Additive exPlanation (SHAP) and Temporal Importance 
Model Explanation (TIME)) in cardiovascular risk prediction using the top-performing models.

Results  In a cohort of 3539 participants, longitudinal information from 35 variables that were repeatedly collected 
in 6 exam visits over 15 years improved subsequent long-term (17 years after) risk prediction by up to 8.3% in C-index 
compared to using baseline data (0.78 vs. 0.72), and up to approximately 4% compared to using the last observed CS 
data (0.75). Time-varying AUC was also higher in models using longitudinal data (0.86–0.87 at 5 years, 0.79–0.81 at 10 
years) than using baseline or last observed CS data (0.80–0.86 at 5 years, 0.73–0.77 at 10 years). Comparative model 
interpretability analysis revealed the impact of longitudinal variables on model prediction on both the individual 
and global scales among different modeling strategies, as well as identifying the best time windows and best timing 
within that window for event prediction. The best strategy to incorporate longitudinal data for accuracy was time 
series massive feature extraction, and the easiest interpretable strategy was trajectory clustering.

Conclusion  Our analysis demonstrates the added value of longitudinal data in predictive accuracy and epidemio‑
logical utility in cardiovascular risk survival analysis in young adults via a unified, scalable framework that compares 
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model performance and explainability. The framework can be extended to a larger number of variables and other 
longitudinal modeling methods.

Trial registration  ClinicalTrials.gov Identifier: NCT00005130, Registration Date: 26/05/2000.

Keywords  Longitudinal data, Explainable AI, Survival analysis, Risk prediction, Repeated measures, Personalized 
medicine, Time-varying covariates, SHAP, TIME, CARDIA

Background
The rapidly expanding availability of large health data sets 
and recent advances in computing power have fuelled 
the growing literature on risk prediction models for 
health outcomes. Prediction of risk for an adverse event 
holds much potential for preventive, interventional, and 
monitoring strategies as well as shedding light on natu-
ral history and pathophysiology. Even though most large 
datasets contain repeated measurements of same vari-
able at different time points (longitudinal data), only a 
small fraction of prediction models have routinely incor-
porated longitudinal data. Less than 8% of prediction 
models in studies published from 2009 to 2016 included 
longitudinal data as time-varying covariates, while many 
studies only rely on data at a single time point (cross-sec-
tional data), typically at baseline, potentially discarding 
valuable information from the longitudinal dataset [1]. 
The utility of longitudinal data for long-term risk predic-
tion is mixed in the literature. For example, in cardiovas-
cular disease (CVD) risk prediction, several studies have 
reported that longitudinal data improve prediction [2–4], 
while some observed negligible to no difference com-
pared to using only baseline data [5–7]. However, most 
studies only consider a small number (8 at most) of time-
varying covariates and mostly focus on traditional risk 
factors such as blood pressure and total cholesterol. The 
utility of higher-dimensional longitudinal data for CVD 
risk prediction remains poorly understood, especially in 
the young adult population, for whom accurate risk strat-
ification at a younger age could potentially have a great 
impact on an individual’s life course [8]. Investigations 
are needed in this area to determine the value of higher-
dimensional longitudinal data.

Several approaches have been proposed for dealing 
with longitudinal data. One of the most common entails 
the inclusion of summary statistics in the prediction 
model, such as average over time, linear slope, or cumu-
lative exposure (area under the time-exposure curve). 
However, these approaches may not fully capture the 
rich information contained in longitudinal datasets such 
as variability and timing of exposure, from longitudinal 
data. Another increasingly popular strategy is joint mod-
eling (JM), which is in essence simultaneously fitting and 
combining the longitudinal and survival processes [9, 10]. 
Reviews of JM methods have been described elsewhere 

[9, 10]. However, papers using JM in CVD have been 
limited to a few longitudinal variables at most [11], and 
the capability of JM in handling higher-dimensional data 
remains unclear. Machine Learning (ML) methods have 
been the solution for higher-dimensional data. Numerous 
works have demonstrated the use of ML in risk predic-
tion of general and CVD medical outcomes in particular 
[12–16]. However, the majority of these studies employ 
ML classification-based methods and not survival analy-
sis and thus are limited in several aspects when dealing 
with time-to-event outcomes. For example, ML clas-
sifiers cannot predict the time to event, do not account 
for censoring, need to be re-trained for each prediction 
time, and could have inconsistent predictions at different 
times (e.g., classifying a patient as having CVD at month 
5 but CVD-free at month 10) [17, 18]. Among frequently 
used ML methods designed for survival analysis such as 
Random Survival Forest (RSF) [19], DeepSurv [20], and 
Nnet-survival [21], many cannot directly process the 
time series of repeated measures as input. A couple of 
prototyped ML survival algorithms for time series have 
been introduced recently, such as Dynamic-DeepHit and 
MATCH-Net [22, 23], but their utilities need to be exter-
nally validated in medical applications. Among all the dif-
ferent strategies to incorporate repeated measures, it is 
unclear which strategy would be the most useful in the 
analysis of large datasets obtained across a long period of 
time.

When assessing usefulness, the quantification of pre-
dictive superiority is often performed using performance 
metrics such as AUC or C-index, which may be insuffi-
cient in determining clinical utility [24]. Model interpret-
ability and clinical implications are infrequently taken 
into consideration, despite being the main reasons limit-
ing adoption of longitudinal data in prediction modelling 
[25]. Temporal dependencies among repeated measures 
challenge longitudinal data interpretability [26], and even 
when interpretability is feasible, clinical utility may not 
be assured. Indeed, model interpretability and clinical 
value remain pivotal questions in the assessment of lon-
gitudinal data based predictive models.

This study has several objectives to tackle the chal-
lenges described above. We first aim to evaluate the util-
ity of multivariate longitudinal data for survival analysis 
of incident CVD prediction in young adults. For this 
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purpose, we apply 6 distinct strategies from statistics, 
statistical ML, and deep learning to process longitudi-
nal data and predict the time-to-cardiovascular event in 
the Coronary Artery Risk Development in Young Adults 
(CARDIA) population. Secondly, we compare the pre-
dictive value among those strategies and against models 
using only cross-sectional data (data collected once, such 
as in the baseline or most recent exam). Finally, we apply 
ML-based model-specific and model-agnostic explaina-
bility methods to explain the top-performing models and 
derive appropriate clinical insights.

Methods
In this section, we present the dataset and cohort filter-
ing in the first subsection, then we present our modeling 
and analysis framework in 3 subsequent subsections. The 
analysis was performed in R and Python.

CARDIA, study design, participant selection, and outcome 
definition
In brief, our study used longitudinal data from the first 
six follow-up exam visits of a larger study called CARDIA 
for survival analysis of future CV events. The design of 
the CARDIA study has been described previously [27]. In 

brief, CARDIA is a prospective, population-based obser-
vational cohort study of 5114 (originally 5115, one per-
son withdrew consent) White and Black men and women 
aged 18 to 30 years, at enrollment in 1985-86. Study 
participants were recruited at four centers in the United 
States (Birmingham, AL.; Chicago, IL; Minneapolis, MN; 
and Oakland, CA). The cohort is approximately balanced 
in age, race, sex, and educational level.

To investigate the utility of longitudinal data for long-
term CVD risk prediction, we used data from six exams 
(Year 0 (Y0): 1985-86, Y2: 1987-88, Y5: 1990-91, Y7: 
1992-93, and Y15: 2000-01), also known as the data col-
lection window (Fig. 1). Each exam collected a wide vari-
ety of variables believed to be related to heart disease. 
The reasons Y15 was chosen as the last exam for data col-
lection were that the CVD rate was relatively flat from Y0 
to Y15 (very few events) and increased linearly from Y15 
onwards (Fig. S1), and that Y15 still allowed us to capture 
premature CVD events. The prediction window started 
from after Y15 through August 2018, with the endpoint 
being the first CVD event during these 17 years, death 
or loss to follow-up. An incident CVD event included 
coronary heart disease (CHD – myocardial infarction, 
acute coronary syndrome, or CHD death, including fatal 

Fig. 1  Method framework visualization. Data from the first six exam visits were used for prediction of time-to-CVD event in the subsequent 17 
years. Six strategies were employed to incorporate longitudinal data in 35 variables. All models were trained and tested under the same 5-fold x 
2 times cross-validation scheme. Model output was survival probabilities (1-predicted CVD risk) over time. Model performance was quantified by 
C-index, AUC, Brier Score, and other metrics. CVD: cardiovascular disease; Cox: Cox proportional hazards; LASSO-Cox: Cox Proportional Hazards 
penalized by Least Shrinkage and Selection Operator; Dynamic-Deephit: recurrent neural network-based survival method for longitudinal data; 
JMBayes: joint modeling under Bayesian approach; RSF: random survival forest
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myocardial infarction), stroke, transient ischemic attack 
(TIA), hospitalization for heart failure, intervention for 
peripheral arterial disease, or death from cardiovascular 
causes. The outcome ascertainment protocols have been 
described in detail elsewhere [28, 29] and are included in 
the Supplement. The final cohort consisted of 3539 par-
ticipants with 19,988 total visits. The participants were 
required to have all six exams. The full inclusion/exclu-
sion criteria for the final cohort are shown in the cohort 
selection flowchart in Fig. S2.

We included a total of 35 variables that were repeat-
edly measured in 6 exams from Y0 to Y15 in most par-
ticipants. Besides demographic variables such as race, 
age, and sex being the time-fixed variables, the rest were 
considered longitudinal and included information about 
anthropometry (BMI, weight, waist girth), physiological 
measures (blood pressure, pulse), indication of taking 
anti-hypertensive medication, socioeconomic markers 
(education, ability to provide for the basics), medical his-
tory, alcohol use, smoking, lipids (cholesterol, triglycer-
ides), glucose, marijuana use, and physical activity levels. 
A full list of variables describing their coding and abbre-
viation is shown in Table S1 and their distributions are 
shown in Table  1. Most variables had no missing data 
in all participants, and in the rare cases of missing data 
in a certain exam, last observation carried forward was 
used. A total of 88 participants out of 3539 (< 3%) were 
excluded due to nonavailability of data. Considering the 
small amount of missing data, we only considered data 
with no missingness in this study. In this proof-of-con-
cept study, we wanted to compare strategies using the 
same set of data and minimize external pre-processing 
steps that could confound or introduce bias to the data, 
so we aimed to evaluate them on the same set of data 
(without missingness). In summary, we used 32 lon-
gitudinal variables in a total of 35 variables collected in 
six exams spanning 15 years for the survival analysis of 
future CVD in the subsequent 17 years.

Modeling longitudinal data
In this work, we examined six different strategies to 
analyze longitudinal data. The first four strategies were 
essentially two-step procedures, in which the first step 
was a processing step that transformed the longitudinal 
trajectory input into a tabular format (i.e. each input fea-
ture held a single value instead of a sequence of repeated 
measures), then the second step fed the inputs from the 
first step to a survival method (e.g., RSF). The last two 
modeling strategies directly incorporated raw longitudi-
nal data for survival prediction as the input (Fig. 1). The 
six strategies were as below:

1.	 Time series massive summary statistics extraction.

2.	 Trajectory clustering.
3.	 Last observed values.
4.	 Data concatenation.
5.	 Recurrent neural network for survival analysis.
6.	 Joint modeling.

The first strategy derived summary statistics from the 
trajectories. For each trajectory corresponding to each 
variable, we extracted not only the commonly used statis-
tics such as minimum, maximum, mean, variance, linear 
trend intercept, and slope, but also many lesser-known 
statistics such as time-reversal asymmetry statistic, auto-
correlation, c3 statistic, absolute energy, entropy meas-
ures, change in quantiles, different correlation measures, 
results from time series hypothesis tests, coefficients 
from time series transformations, etc. The approach has 
also been called highly comparative time series analysis 
[30]. We hypothesized that the lesser-known statistics 
could capture more fine-grained information than just 
using simple statistics and that the combination of many 
kinds of time series statistics would fully capture the 
longitudinal and cross-sectional trends and variations 
in the data. We used the Python package tsfresh [31] for 
efficient and automated extraction of hundreds of fea-
tures for each trajectory. The features were then pruned 
by removing features with at least one NA value, features 
with only one unique value, and correlated features with 
a threshold of 0.95 spearman correlation. The pruned fea-
tures along with the three demographic variables (age, 
sex, and race) were then fed as inputs to survival analy-
sis algorithms such as RSF, Cox, and Cox penalized by 
LASSO (least absolute shrinkage and selection operator) 
(LASSO-Cox) to predict CVD events.

The second strategy essentially performed clustering of 
the trajectories of each longitudinal variable, then used 
the assigned cluster membership per variable per par-
ticipant as the inputs for survival algorithms. Trajectory 
clustering has been used previously in CARDIA [4, 32, 
33], however, its utility as input for ML survival analysis 
models is underexplored. We used a 3-step trajectory 
clustering approach using the R package traj package [34, 
35], which resembled the Proc-Traj in SAS [36]. The first 
step calculated 24 summary measures that described fea-
tures of the trajectories. The second step performed a fac-
tor analysis on these 24 measures to select measures that 
best describe the main features of the trajectories and 
removed redundant measures. The third step assigned 
the trajectories into clusters by applying the k-means 
algorithm to the previously selected measures. The opti-
mal number of clusters for k-means was determined algo-
rithmically by experimenting k-means with 23 clustering 
criteria from the R package NbClust [37], including many 
widely used criteria to lesser-known ones, including the 
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within-cluster sum of squares (the ‘elbow’ method), gap 
statistic, silhouette score, Calinski and Harabasz index, 
cubic clustering criterion, and information criterion [37]. 
The predictive comparison of different criteria is shown 
in Fig. S3 in the Supplement.

The third modeling strategy was simply using the last 
observed value from the longitudinal data as input for 
survival algorithms like RSF and LASSO-Cox. This 
approach could be thought of as a single landmark analy-
sis. This method has been among the most common use 
of longitudinal data, for example using the last observed 

values in electronic health records to predict short-term 
outcomes [5, 24, 38]. Here, the last values up to the last 
time point of the data collection window, Y15, were used. 
In our study setting, the use of Cox on Y15 values to pre-
dict post-Y15 CVD is the equivalent to the extended Cox 
model for longitudinal exposures.

The fourth strategy, data concatenation, included all 
measurements across all different time points as separate 
predictors, by concatenating the repeated measurements 
of 32 longitudinal variables from six exams into a matrix 
of (32 × 6) variable columns. This matrix of 192 variables 

Table 1  Characteristics of CARDIA participants at baseline (Y0, 1985–1986) and at Y15 Exam (2000–2001). Values outside parentheses 
denote mean, values inside parentheses denote standard deviation unless noted to be in percentage

a 1 participant withdrew from the original enrollment cohort of 5115

Variable Y0 (all participants) Y0 Y15 Variable Y0 (all participants) Y0 Exam Y15
(N = 5114a) (N = 3539) (N = 3539) (N = 5114a) (N = 3539) (N = 3539)

Age 25 (3.6) 25 (3.6) 40 (3.6)

Sex (Male) 2327 (46%) 1572 (44%) 1572 (44%) # of times pregnant in life 0.60 (1.2) 0.59 (1.2) 1.4 (1.9)

Race Asthma 219 (4%) 141 (4%) 204 (6%)

Black 2637 (52%) 1666 (47%) 1666 (47%) Cancer 141 (3%) 106 (3%) 115 (3%)

White 2477 (48%) 1873 (53%) 1873 (53%) Diabetes 43 (1%) 22 (1%) 198 (6%)

Systolic blood pressure 
(SBP)

110 (11) 110 (11) 113 (15) Gall bladder problem 45 (1%) 31 (1%) 114 (3%)

Diastolic blood pressure 
(DBP)

69 (9.6) 69 (9.5) 74 (11) Kidney problem 215 (4%) 130 (4%) 216 (6%)

Use of anti-hypertensive 
medication

115 (2%) 75 (2%) 253 (7%) Nervous, emotional or 
mental disorder

380 (7%) 253 (7%) 227 (6%)

Pulse beats (in 30s) 35 (5.5) 34 (5.3) 34 (5.7) Liver problem 54 (1%) 39 (1%) 48 (1%)

Body Mass Index (BMI) 24 (5.0) 24 (4.9) 29 (6.8) Parent history of heart 
attack

733 (14%) 514 (15%) 718 (20%)

Waist girth (cm) 78 (11) 78 (11) 89 (15) Smoking now 1546 (30%) 947 (27%) 772 (22%)

Weight (lbs.) 157 (36) 157 (35) 185 (47) Cigarettes smoked/day 5.5 (9.0) 5.1 (8.7) 2.7 (6.7)

Arm circumference (cm) 29 (4.7) 29 (4.7) 33 (5.3) # of drinks of beer/week 
(12 oz/drink)

3.0 (6.9) 3.0 (6.9) 2.4 (7.3)

Education level (grades) 14 (2.3) 14 (2.2) 15 (2.9) # of shots of hard liquor/
week

1.0 (3.0) 0.96 (2.9) 0.94 (3.6)

Ability to pay for the very 
basics

# of drinks of wine/week 
(5 oz/drink)

0.85 (2.2) 0.85 (2.2) 1.2 (3.6)

Very hard 221 (4%) 126 (4%) 113 (3%) Times used marijuana 
in life

2.0 (1.5) 2.1 (1.5) 2.2 (1.8)

Hard 357 (7%) 240 (7%) 166 (5%) Physical activity level 
(self-assessed answers)

Somewhat hard 1212 (24%) 827 (23%) 726 (21%) 1: Inactive 367 (7%) 241 (7%) 228 (6%)

Not very hard 3315 (65%) 2340 (66%) 2534 (72%) 2 732 (14%) 508 (14%) 593 (17%)

Total cholesterol (mg/dL) 177 (33) 177 (33) 185 (36) 3: Moderately active 1965 (38%) 1363 (39%) 1570 (44%)

Use of cholesterol-lower‑
ing medication

11 (0.2%) 9 (0.3%) 9 (0.3%) 4 1088 (21%) 795 (22%) 617 (17%)

HDL cholesterol (mg/dl) 53 (13) 53 (13) 51 (14) 5: very active 955 (19%) 629 (18%) 531 (15%)

LDL cholesterol (mg/dl) 110 (31) 110 (31) 113 (32) Outcomes:

Triglycerides (mg/dl) 73 (48) 73 (47) 105 (92) All-cause death by end 
of follow-up

468 (9%) 200 (6%) 200 (6%)

Fasting glucose (mg/100 
ml)

83 (16) 82 (10) 89 (16) CVD event by end of 
follow up

287 (6%) 181 (5%) 181 (5%)
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plus the time-fixed demographic variables was then fed 
as input to RSF and LASSO-Cox. This strategy, of course, 
strongly assumed that the data collected 5 years apart 
from different exams were independent of one another. 
However, this strategy has shown good predictive perfor-
mance, for example including all past data points in elec-
tronic health records that were collected only a few days 
apart for 10-year CVD prediction [13, 39, 40]. Therefore, 
despite this strategy’s limitation of the independence 
assumption, we were interested in the predictive value of 
this strategy.

The fifth strategy captured the longitudinal history by 
embedding the history of past measures into latent rep-
resentations to predict survival risks via deep learning. 
We adapted a recently introduced recurrent network-
based method capable of incorporating longitudinal data 
for survival analysis called Dynamic-DeepHit [22]. This 
method issued dynamically updated survival predictions 
without making any assumptions about the underlying 
longitudinal and survival processes. Briefly, Dynamic-
DeepHit is a multi-task network that consists of two sets 
of subnetworks, one is a shared subnetwork that handles 
longitudinal measurements and predicts the next meas-
urements of time-varying covariates. The other set of 
subnetwork includes cause-specific survival networks 
which estimate the joint distribution of the first hitting 
time and event [41]. To compare the performance gain 
of this strategy in CVD prediction with other longitu-
dinal-modeling strategies in this work, we applied this 
method to the same cohort and same longitudinal data, 
meaning participants with CVD or censorship during the 
data collection were removed and data outside the data 
collection window were not included. A separate model 
focusing on dynamic prediction using Dynamic-DeepHit 
that included all participants since Y0 was also developed 
and its performance in time-varying AUC is shown in 
Fig. S4 the Supplement.

The sixth and last strategy to incorporate longitudinal 
data was statistical joint modeling (JM), by simultane-
ously describing both longitudinal and survival processes. 
We implemented the JM method proposed by Rizopou-
los that fit joint models using a Bayesian approach via 
the R package JMbayes [42]. The joint model consisted of 
two sets of sub-models: one set included 32 linear mixed 
models to model the 32 longitudinal variables, and the 
other set included a Cox model including the time-fixed 
variables to model the time-to-event process. These two 
sets of sub-models were linked via a function of shared 
random effects, and the joint model aimed to learn a full 
representation of the joint distribution of the longitudi-
nal time-to-event data.

The six modeling strategies described above were 
compared with a reference strategy, which used only 

data from the first exam (Y0) as input to RSF, Cox, and 
LASSO-Cox. In some previous work, this strategy was 
referred to as the baseline carried forward method (BCF) 
[5].

Model training and evaluation
All the models were trained and evaluated on the same 
cohort by 5-fold x 2 times cross-validation scheme 
(Fig.  1). For each time the whole data was split, 20% of 
the data went into testing, while the remaining 80% was 
further divided into training and validation sets. The 
training sets were used to fit the models, the validation 
sets were for hyperparameter tuning, and the testing sets 
were for assessing model performance. Stratified sam-
pling was conducted to ensure the same ratio of events to 
non-events across the splits.

Model performance was quantified using several met-
rics. The main metrics include the time-dependent area 
under the receiver-operating curve (AUC) accounting 
for censorship [43], the time-dependent concordance 
index that accounted for censoring distribution [44], and 
the Brier Score [45]. We did not use Harrell’s C-index 
because Harrell’s version ignored the censoring distri-
bution and assumed that the censoring distribution is 
independent of predictor variables [46]. The Brier Score 
measured the mean squared difference between the pre-
dicted probabilities and the actual outcomes. Higher 
C-index, higher AUC, and lower Brier Score indicated 
better prediction performance. In addition, the inte-
grated AUC (iAUC) was used to quantify all time-varying 
AUCs as one number [47]. This iAUC was formulated for 
survival analysis and weighted by the estimated probabil-
ity density of the time-to-event outcome [47]. We chose 
the AUC and iAUC as the main model performance met-
ric because it had been shown that AUC was better than 
the C-index for the evaluation of t-year predicted risks 
[48]. Additional model performance metrics included 
sensitivity, specificity, positive predictive value (PPV), 
negative predictive value (NPP), F1 score, and Matthew’s 
Correlation coefficient (MCC) [49], at the last time point 
of the prediction window (17 years after Y15). We used 
the versions that had been adapted for survival analysis 
and accounted for censorship for these metrics [50, 51]. 
Sensitivity, Specificity, PPV, NPV, and MCC were deter-
mined at the probability binary cutoff where the F1 was 
maximized.

Model interpretability
To explain the top-performing models, we employed 
model explanation methods that we believed to be the 
most appropriate to each top model and if possible, used 
the same explanation method among different mod-
els. For models representing modeling strategies that 
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transformed longitudinal data to tabular formats (time 
series massive feature extraction, trajectory clustering, 
last observed value, and data concatenation), model-spe-
cific explanation methods for tabular data were suitable. 
We employed RSF’s permutation-based variable impor-
tance via the R package rfsrc [52] and the model-agnostic 
method SHapley Additive exPlanation (SHAP) via the 
Python package shap [53]. SHAP is an increasingly com-
mon explanation method that is based on game theory 
that essentially computes the contribution of a feature 
value to the difference between the actual prediction 
and the mean prediction. The model-agnostic version of 
SHAP, Kernel SHAP, was used [53]. We used the SHAP 
values from Kernel SHAP to obtain visualizations of 
how values of the top predictive features affected model 
predictions among all participants and in an individual 
participant.

RSF-VIMP and SHAP were not applicable for all mod-
els with input in a longitudinal format, such as models 
representing the deep learning and the joint modeling 
strategies, as they would ignore the temporal depend-
encies and correlations within the trajectory. An expla-
nation method specifically designed for temporal data 
was therefore needed and a model-agnostic method was 
preferred to enable comparisons among models. Here 
we also adapted a third explanation method, Tempo-
ral Importance Model Explanation (TIME) [54]. TIME 
is a recent permutation-based model-agnostic method 
that can show, for each variable, its overall importance 
to the model, the most important temporal window, 
and whether the ordering of the values within the time 
window affects the model’s predictions [54]. We briefly 
explain TIME in the Supplement and the method is fully 
explained elsewhere [54]. We found that TIME was very 
computationally expensive and hence only used TIME 
to explain the best-performing model. It is worth noting 
that TIME is capable of explaining all models. TIME’s 
number of permutation parameter was set to 100, and the 
window localization parameter was set to 0.1, meaning 
the window of importance accounted for at least 90% of 
the total importance of the whole series for each variable.

Results
A total of 3539 participants were included in the analy-
sis. Table  1 describes the final analysis sub-cohort and 
the cohort of all CARDIA participants. Similar char-
acteristics profiles were observed for the analysis sub-
cohort and the all-participant cohort, except that there 
was a small decrease in the percentage of Black, male 
and smoking participants in the final analysis sub-cohort 
(2–3%). The mean age was 25 years old at CARDIA 
ExamY0 (baseline) and 40 at the start of the prediction 
window, Y15 (year 15 Exam). The final cohort consisted 

of 44% male, 47% black, and 53% white. Over 15 years 
within the data collection window, the averaged SBP and 
DBP (systolic and diastolic blood pressure), anthropo-
metric measurements, total cholesterol, LDL cholesterol, 
triglycerides, and purchase ability (economic buying 
power) increased, while measures of smoking intensity 
reduced. At the end of the data collection window, 6% of 
the participants had diabetes, 6% had a history of kidney 
disease, 7% were taking anti-hypertensive medication, 
and 22% were current smokers. By the end of the predic-
tion window, 181 CVD events had occurred (5%).

Model performances
Figure  2 shows the performances of representative 
models for each longitudinal modelling strategy over 
time. Table  2 shows the performances of all the predic-
tion models using the main evaluation metrics (iAUC, 
C-index, and last AUC). The performances in additional 
evaluation metrics are provided in Table S2. Models using 
longitudinal data typically performed better than models 
using only Y15 data or Y0 data, in terms of AUCs and 
C-index. Models trained on Y0 data performed the worst, 
with 0.03–0.05 AUC lower compared to Y15-data train-
ing models and 0.05–0.07 compared to models trained 
on longitudinal data. The models using longitudinal data 
in at least two time-points and models using only Y15 
data had similar performances for CVD prediction early 
in the prediction window, but the gap gradually widened 
to up to 0.03 in time-varying AUC with longer-term fol-
low-up. Even though results from models using only Y15 
data were only 0.016 lower in iAUC than models using 
longitudinal data, the Y15-only models were ~ 0.03 lower 
in post-10 years iAUC, C-index, and AUC at 17 years of 
follow-up. The models using longitudinal data had higher 
F1, PPV, and MCC than the cross-sectional models, rela-
tive differences were small across all models due to the 
low number of events in this younger population.

Among the models trained on longitudinal data, the 
RSF trained on time series extracted features (referred to 
as RSF-TS from now on) was the best performing model, 
with the highest iAUC, C-index, last AUC, F1, MCC, and 
smallest Brier Score. This model included a total of 249 
features from 32 longitudinal variables. The model rep-
resenting the deep learning approach, Dynamic-DeepHit, 
was comparable, with only a small dip in performance. 
The concatenation strategy model predicted CVD quite 
well, on par with Dynamic-DeepHit in the overall iAUC 
and the last C-index, despite ignoring time series self-
correlation. The model for the trajectory clustering 
approach had the highest median time-varying AUC up 
to 10 years, however its performance dropped towards 
the prediction window endpoint. The joint modelling 
JMBayes model did not converge due to the algorithm 
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being unable to handle the large number (32) of longi-
tudinal variables. However, when the dimension was 
lower, for example, when the variable pool was limited to 
9 traditional ASCVD risk factors (age, gender, race, SBP, 
cholesterol, HDL, smoking status, diabetes status, and 
taking high-blood pressure medication status), JMBayes 
converged, although its predictive performance was still 
not comparable to the other tested techniques as shown 
in Fig. S5.

Insights from models
We first present the results of the most well-known 
explanation method, RSF-VIMP, on the most inter-
pretable model, RSF trained on trajectory clustering 
data (Fig. 3), followed by SHAP results on RSF trained 
on trajectory clustering data and the best performing 
model (RSF-TS) (Fig. 4), and finally the results of using 
TIME to explain the best performing models (Fig.  5). 
We also attempted to explain the RSF model trained 

Fig. 2  Model performance over time from different longitudinal modeling strategies. Median time-varying AUC over 10 test sets is shown for all six 
strategies (the joint model did not converge) plus the reference using only baseline (Y0) data. RSF: Random Survival Forest

Table 2  Predictive performance of all models on 35 variables (mean and 95% empirical bootstrap interval)

The best scores are bolded. iAUC: integrated AUC, LASSO-Cox: Cox Proportional Hazards penalized by LeAst Shrinkage and Selection Operator. JMBayes Joint 
modeling with Bayesian approach, RSF Random Survival Forest

Strategy Model iAUC​ C-index Last AUC​

Time-series (TS) massive 
feature extraction

RSF on TS-extracted features 0.808 (0.790, 0.826) 0.778 (0.757, 0.801) 0.758 (0.733, 0.784)

LASSO-Cox on TS-extracted features 0.744 (0.711, 0.781) 0.713 (0.686, 0.739) 0.701 (0.674, 0.727)

Recurrent neural network Dynamic-DeepHit 0.794 (0.764, 0.825) 0.767 (0.745, 0.789) 0.762 (0.733, 0.792)
Trajectory clustering RSF on trajectory clustering data 0.793 (0.772, 0.816) 0.741 (0.721, 0.76) 0.725 (0.705, 0.744)

Data concatenation RSF on concatenated data 0.797 (0.778, 0.817) 0.766 (0.745, 0.788) 0.751 (0.725, 0.779)

Joint modeling JMBayes Did not converge

Last observed values RSF on Y15 data 0.793 (0.773, 0.812) 0.750 (0.729, 0.77) 0.731 (0.705, 0.76)

Cox on Y15 data 0.778 (0.758, 0.804) 0.75 (0.733, 0.769) 0.728 (0.705, 0.752)

Cox on Y15 data 0.793 (0.772, 0.818) 0.748 (0.73, 0.763) 0.727 (0.707, 0.745)

Reference (Y0 data) RSF on Y0 data 0.754 (0.73, 0.777) 0.721 (0.698, 0.743) 0.699 (0.672, 0.726)

Cox on Y0 data 0.748 (0.724, 0.773) 0.709 (0.686, 0.73) 0.685 (0.654, 0.716)

LASSO-Cox on Y0 data 0.739 (0.713, 0.768) 0.698 (0.678, 0.717) 0.678 (0.645, 0.711)
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on concatenated data (Fig. S6). Additionally, results for 
race-specific models are shown in supplemental Table 
S3 and Fig. S7.

The RSF trained on trajectory clustering data 
(referred to as RSF-Traj from now on) was an attrac-
tive model to explain since it consisted of only the 
assigned clustering memberships as input and had rel-
atively high AUCs in the early years of the prediction 
window. Figure 3 shows the explanation for this model, 
including the variable importance ranking of the input 
variables, the cluster profiles for each variable, and the 
partial dependence plots showing the effects of clus-
ter memberships on survival probability. The variable 
importance ranking was obtained from RSF-VIMP as 
the average over 10 rankings corresponding to 10-fold 
cross-validation. The top predictors included trajecto-
ries of blood pressure (DBP, SBP), taking anti-hyper-
tensive medication, measures of glucose, smoking 
status, kidney problem, low-density lipoprotein choles-
terol (LDL), as well as gender. Trajectories of BMI and 
weight also contributed to a degree in the prediction. 
Regarding the cluster profiles, for continuous variables, 
the clusters seemed to be separated based on the mag-
nitude, trend, or a combination of both. For example, 
LDL clusters consisted of low LDL, high-decreasing 
LDL, and high-increasing LDL. For categorical vari-
ables, clusters were separated based on switching state 
status (e.g., for smoking: always non-smoker, always 
smoker, and changing from smoker to non-smoker) 
and time of switching state for categorical variables 
(e.g., for taking anti-hypertensive medication: always 
not having to take, start taking at Y5, and start taking 
at Y10). Regarding relationships with the outcome, high 
DBP and use of hypertension medications from a young 
age, high and fluctuating glucose over 15 years, being 
male, a long history of smoking, high and increasing 
LDL, steeply increasing SBP and heart rate, high and 
increasing BMI and other anthropometric measure-
ments (weight, waist girth, arm circumference), hav-
ing a liver problem, steep increases in triglyceride 
levels, constantly low HDL, having a parent history of 
heart attack, taking cholesterol-lowering medication, 
and economic status (inability to provide the basics 
for self or family), were all associated with lower sur-
vival probability (higher CVD risk). The results of the 

demographic variables were also consistent with prior 
knowledge: male, Black, and older age were associated 
with a higher CVD risk.

Figure  4 shows the SHAP explanation for the same 
RSF-Traj model and the best-performing model, the RSF-
TS model. The SHAP summary plot for RSF-Traj shows 
how different values of clustering membership in each 
predictor impacted the SHAP value and the survival 
probability. A further deviation from the right side indi-
cates a stronger association with a lower survival prob-
ability. The predictors with the strongest association with 
lowered survival probability included HBM, smoking 
status, DBP, glucose, LDL, HDL, SBP, and pulse beats. 
In terms of predictor values, being in clusters 2 and 3 for 
taking anti-hypertensive medication (been taking medi-
cation since Y10 or Y5 Exam), cluster 2 for smoking (reg-
ular smoker), cluster 1 for DBP (high-increasing), cluster 
3 for glucose (high), cluster 3 for LDL (high-increasing), 
cluster 1 for HDL (low-stable), cluster 3 for SBP (high-
rapidly increasing), and cluster 3 for pulse beat (increas-
ing) were all associated with lower SHAP value and lower 
survival probability.

The force plot for RSF-Traj in Fig. 4 explains why a par-
ticular participant of interest has a lower predicted sur-
vival probability than the population. Despite their pulse 
trajectory in the low-stable group, the contributing fac-
tors that push the prediction towards higher risk included 
the fact that they had been taking BP medication for at 
least 5 years before the last time point, their DBP trajec-
tory was in the high-increasing group, their HDL trajec-
tory was low and slightly decreasing, and the trajectories 
of their obesity indicators (weight, arm circumference, 
and BMI) were in high and increasing groups.

The SHAP summary and individual force plots for the 
RSF-TS model could also be interpreted similarly. The 
top predictors in RSF-TS included the last observed 
value of SBP and DBP, SBP absolute energy (sum of all 
SBP measures from the time series), and intercepts of the 
linear trend in LDL, HDL. Higher values of linear trend 
intercept in LDL, last value of SBP and DBP, absolute 
energy of SBP, and lower values of linear trend intercept 
in HDL were associated with lower survival probability. 
Regarding the force plot for RSF-TS, the most impact-
ful contributors to their predicted survival probability 
being lower than the population average were their last 

Fig. 3  Explanation for the RSF model trained on trajectory clustering data. Top-left panel: normalized median variable importance (VIMP) over 10 
folds from permutation for the input variables (trajectory membership and demographic variables) of RSF on trajectory clustering data. Top-right 
panel: cluster profiles for each longitudinal variable, showing the representative (median) trajectory per cluster. The clustered plots are ordered by 
the ranking on the left. Bottom panel: partial dependence plots showing the effects of cluster membership (x-axis) on survival probability on the 
y-axis (1-CVD risk). The colors correspond to the cluster median trajectories in the top panel. DBP: diastolic blood pressure, HBM: taking hypertensive 
medication (yes/no), GLU: glucose, SMKNW: smoking regularly now (yes/no), KIDNY: kidney problem (yes/no), LDL: low-density lipoprotein, SBP: 
systolic blood pressure, WGT: weight. The full variable names are explained in the abbreviation section

(See figure on next page.)



Page 10 of 19Nguyen et al. BMC Medical Research Methodology           (2023) 23:23 

Fig. 3  (See legend on previous page.)
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Fig. 4  SHAP explanation. Panel A and B: SHAP summary plot for the top-20 predictors of all subjects (A) and individual force plot of a single subject 
(B) for RSF model trained on trajectory clustering memberships. High feature value = cluster group 3, low feature value = cluster 1. Panel C and D: 
summary plot of the top-20 predictors (C) and individual force plot of the same subject (D) for RSF trained on 250 time-series extracted summary 
statistics. In the summary plots, each dot represents a subject. A dot’s position along the x axis (i.e., the actual SHAP value) represents the impact 
that feature had on the model’s output for that subject, and in this case corresponds to the survival probability (i.e., a lower SHAP value indicates 
a lower survival probability, or a higher CVD risk). Features are ordered along the y axis based on the mean of their absolute Shapley values. The 
dot’s color represents high (pink) or low (blue) value of the feature, and dots “pile up” along each feature row to show density. In the individual force 
plots, a longer arrow indicates a greater impact on pushing the predicted survival probability of the subject towards (pink) or away from (blue) the 
population average
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observed DBP value being 111 mmHg, followed by their 
high sum of all SBP measures, their high c3 statistic value 
in LDL and SBP (meaning their LDL and SBP trajectories 
being non-linear, asymmetrical, and increasing), their 
last SBP value of 141, and followed by other features with 
decreasing impacts.

Since the inputs of RSF-TS were 250 mathematical time 
series statistics derived from longitudinal data even after 
pruning, interpreting a ranking of input variables from 
SHAP or RSF-VIMP would require extensive knowledge 
of the mathematical theory behind each statistic, which 
would not be efficient nor helpful to clinicians. There-
fore, here we proposed a more intuitive explanation 
using the TIME method (Fig. 5). According to Fig. 5, the 
most important variables were SBP, Glucose, and Waist 
Girth (> 0.5 normalized importance score); followed by 
BMI, Amount of Hard Liquor Drink Per Week, Weight, 
HDL, Taking Anti-hypertensive Medication, DBP, and 

Triglycerides, with the important windows covering the 
entire length, indicating all time steps were important. 
Regarding demographic variables, only the first value of 
age, race, and gender was deemed important. The order 
within the important windows was important to model 
prediction in most variables, except for taking BP medi-
cation, DBP, physical activity, and kidney problems. 
TIME also showed that early measurements in some var-
iables were more important for lifetime CVD prediction 
than the more recent measurements, such as smoking, 
LDL, and parent history of heart problems.

Discussion
There is limited work in the literature that incorporates 
longitudinal data for risk prediction using survival analy-
sis and little comparison of recently introduced methods 
and statistical methods in terms of their predictive accu-
racy and utility in cardiovascular medicine. Our study 

Fig. 5  Model explanation of the best performing model, RSF trained on time series extracted features, using TIME. TIME (Temporal Importance 
Model Explanation) is a model-agnostic longitudinal explanation method. A cell (box) is colored if it’s important, is white if not deemed important 
by the model. Each row is a variable and shows the most important windows to the model (groups of cells in the same shade of color). The 
variables are ordered along the y-axis based on the overall importance (darker color = more important). Hatched texture implies the ordering within 
the window is important to model prediction (i.e., shuffling the variable values at different times within the window affects the model prediction)
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aims to fill these gaps by investigating six strategies span-
ning a wide range of different methodologies for incor-
porating multivariate longitudinal data into long-term 
CVD prediction in young adults. Our study presents a 
comparative, interpretable, and scalable ML framework 
for survival analysis using multivariate longitudinal data. 
We provide a thorough discussion on spatial (variable) 
and temporal interpretability, as well as epidemiological 
utility, to fill the gap left by the majority of ML works for 
longitudinal data, which only focus on predictive accu-
racy. We also emphasize that the decision to pick the best 
methodology should be guided by both interpretability 
and predictive performance. Our study demonstrates 
the application of the proposed framework for predict-
ing CVD in young adults using longitudinal data. Young 
adults are often underrepresented in research, but under-
standing their cardiovascular risks at a young age could 
have a big impact on their life course. Our interpretability 
analysis of risk factors’ trajectory history provides valu-
able epidemiological insights for young adults, including 
the cumulative and irreversible effects of early exposure 
to risk factors on lifetime cardiovascular development.

Added predictive value of longitudinal data
One of the goals of our study was to answer the question 
of what is the added value of longitudinal data. In terms 
of predictive performance, we show that longitudinal 
data improved up to 8% in AUC and C-index, compared 
to using baseline values alone, and up to 4% compared to 
using the last observed data. The integrated AUCs over 
17 years show that there is a small difference between the 
models using longitudinal history versus the best model 
using the last observed data (+ 0.016), but the integrated 
AUCs for post-10-year CVD risks show a clearer differ-
ence (+ 0.028). These results suggest that most of the 
predictive value of using longitudinal data lies in the 
long-term, whereas short-term prediction could use 
either data from multiple time points or just the last time 
point. In the literature, the number of papers reporting 
the difference between with and without the incorpora-
tion of repeated measurements is limited. Among those 
that report, the added improvement in C-index is 0.072 
(confidence interval 0.002–0.139) on average, as shown 
in a structural review in the critical care setting [25]. 
Another report notes that JM for SBP and DBP leads to 
a gain of 0.03–0.04 in AUC [2]. The added improvement 
observed in our study is within these ranges.

Regarding the comparison of modeling strategies, in 
terms of predictive performance, the results suggest that 
the time series massive summary statistics extraction 
performs the best in both discrimination and calibra-
tion. The DL-based survival method Dynamic-DeepHit 
and the data concatenation method had a slightly lower 

performance. This finding agrees with previous reports 
showing trend analysis from the time series is more 
important in discriminating cases from controls than 
just using the raw time series as inputs in predicting car-
diac arrest [55, 56]. However, these studies are classifica-
tion problems, our study extends the application of time 
series massive feature extraction to survival analysis. We 
believe that the superior performance of this strategy 
comes from the extracted time series features that cover 
many characteristics from the time series such as trend, 
symmetry, abrupt transitions, number of peaks, etc., and 
thus help preserve longitudinal information at differ-
ent levels of granularity. These features, coupled with a 
method robust for high-dimensional data like RSF, lead 
to the best predictive performance.

The trajectory clustering strategy has the highest 
median AUC compared to the other algorithms up to 
10 years of follow-up, however, the performance drops 
further into the prediction window (Fig.  2). Few papers 
have used trajectory clustering as input to survival analy-
sis before, but they are limited to clustering one or two 
covariates [32, 57]. We extend this strategy to a higher-
dimensional setting. This approach could be thought 
of as a dimensionality reduction alternative to the time 
series feature extraction approach. Trajectory cluster-
ing does not increase the dimension of the data at all 
since the only input to the survival model is the cluster 
membership. Of course, because of this, this approach is 
unable to retain fine-grained information but still main-
tains a respectable predictive performance, and it might 
be easier to interpret for clinicians and explainable to 
patients.

Interestingly, the data concatenation strategy, which 
includes all past measurements and treats repeated meas-
ures as independent input variables, performs relatively 
well. Its discriminative metrics are worse than the time 
series extraction approach but better than just using the 
last observed values. This approach has been employed 
in several works before and shown to perform just as 
well as, if not better than, using one time-point [13, 39, 
40]. If the end goal is to look only at predictive capability, 
this approach’s simple underlying idea, straightforward 
implementation, and ability to include all past measure-
ments could make it an attractive approach.

It is also interesting to note that JM is among the 
worst-performing strategies. It did not converge when 
the number of covariates with repeated measures was 
high (32), and when the number was low (9), its predic-
tive performance was the lowest among all strategies. 
In the literature, despite the growing number of studies 
adopting JM for a dataset, few works compare JM with a 
variety of other longitudinal methods. The observations 
from our study agree with previous works showing JM 
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is no better than using just the last observed values [5, 
39], and not as good as the dynamic DL survival method 
Dynamic-DeepHit [22]. It might be worth noting that in 
our experiments with JM, we did not exhaustively try all 
tuning options, for example, we did not experiment with 
different specifications of the functional form linking the 
longitudinal and survival processes and instead used the 
default form, which adds the participant-specific linear 
predictors of the mixed-effect models as time-varying 
covariates in the survival model. However, changing the 
functional form has been shown to only offer a modest 
increase, if any, or even lowers the AUC [58]. In addition, 
since the survival model of JM is based on Cox and the 
longitudinal sub-models are linear mixed-effect models, 
they share the same limitations as Cox and mixed mod-
els, such as the inability to handle many covariates, non-
linearity, and proportional-hazard assumption. Because 
of these reasons and findings, further comparative stud-
ies are needed to advocate the value of JM in higher-
dimensional settings.

Another interesting observation is when the number 
of covariates is small, complex methods like time series 
massive feature extraction or Dynamic-DeepHit perform 
no better than Cox trained on the last observed values, 
as shown in our experiment using only 9 ASCVD risk 
factors, of which 6 are longitudinal covariates (Fig. S5). 
This finding agrees with some previous reports using a 
small number of longitudinal covariates for CVD predic-
tion, observing that longitudinal data only offers modest 
improvement or no improvement at all compared to just 
using data from one time-point [5]. This result suggests 
that the predictive value of longitudinal data shines in a 
higher-dimensional setting, although further research 
with varying data dimensionalities is needed to confirm 
this observation.

Overall, all strategies using longitudinal data per-
form better than using cross-sectional data at baseline. 
Among the strategies, the last observed value strategy 
has the worst discriminative performance in the higher-
dimensional setting, while the time series massive feature 
extraction is the best, followed by dynamic DL survival, 
trajectory clustering, and concatenation. In terms of cali-
bration, most strategies have similar Brier Scores, with 
the time series feature extraction strategy having the low-
est one.

Temporal model interpretability
While the improvement in predictive capabilities is one 
reason to use longitudinal data, the other is to identify 
disease processes both at the population and the individ-
ual level using trends and outliers in data, that cross-sec-
tional data often misses. Oftentimes, the quantification 
of predictive improvement is performed using just the 

differences in C-index which offers limited clinical inter-
pretability, as noted by [24]. Decreased interpretability 
and limited clinical value are two main reasons that limit 
the adoption of longitudinal data in prediction modeling 
[25]. Interpreting models using longitudinal data is even 
more challenging than those using tabular data (where 
each variable takes a single value instead of a sequence of 
repeated measures) since the temporal nature of longitu-
dinal data renders methods that work with tabular data 
unable to work with raw time series. For example, per-
mutation-based explainability methods for tabular data 
would carry permutations of individual timesteps in the 
temporal setting, which ignores the temporal structure 
of the data and correlations within the time series [54]. 
In this work, we proposed and examined two solutions 
to this problem: (1) summarizing the information from 
longitudinal data so that the input for the survival model 
is in tabular format, then applying explainability meth-
ods for tabular data, and (2) directly using explainability 
methods specifically designed for temporal data. The first 
solution worked conveniently with the time series mas-
sive feature extraction strategy and the trajectory clus-
tering strategy, since they essentially represent the time 
series in summary statistics, and thus we explained mod-
els adopting those two strategies with a model-specific 
explainability method, RSF-VIMP, and a model-agnostic 
one, SHAP. For models adopting strategies that take in 
raw time series as input, only the second solution would 
work, and we used the model-agnostic TIME method to 
explain those models.

The following structure of this sub-section is as follows: 
we first discuss the results and implication of the most 
well-known method, RSF-VIMP, on the most interpret-
able model, RSF-Traj, followed by SHAP on RSF-Traj and 
RSF-TS, then followed by TIME.

RSF‑VIMP
As shown in the Results section, RSF-VIMP on RSF-
Traj is perhaps the most interpretable and simple of 
all. RSF-VIMP is one of the most well-known methods. 
The information from trajectory clustering is simple as 
it only includes clustering memberships. Coupling the 
global importance ranking from VIMP with a visualiza-
tion of the cluster profiles and the partial dependence 
plots gives the clinician a comprehensive picture of which 
subgroups are high- or low-risk for CVD. The model 
explanation identifies and confirms the association of tra-
jectory groups with CVD risks observed in some previ-
ous trajectory modeling works that focused on a specific 
risk factor, such as high BP trajectories throughout young 
adulthood, associated with increased CVD risk in mid-
dle age [4, 59]. The rapid increase BMI trajectory group 
is associated with a higher risk of CVD compared to the 
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other BMI groups, which aligns with previously reported 
observations in BMI trajectories [60]. The trajectories for 
indicators of metabolism, including triglyceride, LDL, 
HDL, total cholesterol, and glucose, also show that high 
or increasing groups are associated with higher CVD 
risks, which agrees with the result from a previous CAR-
DIA study showing high association of initially high or 
worsening metabolic trajectories with greater prevalence 
and extent of coronary artery calcification and myocar-
dial dysfunction [33]. In the epidemiological setting, we 
envision that the trajectory clustering model along with 
its explanation and visualization could help clinicians and 
epidemiologists identify subsets of participants with dis-
tinct trajectory profiles, select high-risk groups, and bet-
ter understand the impact of temporal evolution of risk 
factors to heart disease, which could be helpful in plan-
ning preventive strategies.

SHAP
Unlike RSF-VIMP which is limited to RSF, SHAP works 
with any algorithm that can provide a mapping function 
from the input matrix to the predicted outcome. There 
have been discussions that investigate and compare 
how different ML algorithms treat tabular data differ-
ently using SHAP [61], but our study, to our knowledge, 
is among the first to apply SHAP to explain information 
extracted from longitudinal data for a time-to-event out-
come. The added value of the SHAP summary plot com-
pared to VIMP’s variable ranking is that SHAP displays 
how different feature values impact the model’s predicted 
survival probability and quantifies the degree of impact 
on the x-axis. Furthermore, the SHAP individual force 
plots offer a unique personalized explanation to a partici-
pant of interest, explaining how the participant’s feature 
values contribute to the model’s predicted survival prob-
ability, as demonstrated in the Results.

Regarding the individual explanation between the 
trajectory clustering strategy and the massive feature 
extraction strategy, the former appears to be more intui-
tive than the latter. On the same participant of interest in 
Fig. 4, both trajectory clustering and time series feature 
extraction assign a lower and similar survival probability 
than the population means in both strategies. However, 
the trajectory clustering points out that, the reasons for 
the participant’s lowered predicted survival probabil-
ity include their history of taking BP medication, their 
high-increasing DBP trajectory, low-decreasing HDL 
trajectory, and high-increasing trajectories of obesity 
indicators (weight, arm circumference, and BMI). The 
time series feature extraction, on the other hand, relies 
on many summary statistics to predict. The number of 
the contributing factors is high with the most impactful 
predictors being summary statistics of SBP and LDL (last 

observed DBP and SBP, SBP absolute energy (sum of all 
values), statistics indicating non-linearity and increas-
ing trend in LDL and SBP, and many more factors). This 
analysis of individual explainability suggests that SHAP 
works better with few and interpretable inputs like those 
provided from trajectory clustering. Another way of 
interpretation is needed to better explain methods with 
high-dimensional, mathematical-complex input like RSF-
TS. That led us to use TIME.

TIME
TIME is one explainability technique that explains RSF-
TS better, along with the capability of explaining all 
temporal models using raw time series as input. TIME 
is one of the only truly model-agnostic interpretability 
methods introduced to date, with very limited alterna-
tives. Most of the limited number of proposed methods 
for temporal model explanation are model-specific meth-
ods, like saliency maps and class activation maps, that 
only work with certain neural network architectures 
[62–65]. Some recently prototyped methods that appear 
to be model-agnostic, such as FIT and Win-IT [26, 66], 
work with neural networks only. In this paper, we show 
TIME provides a simplified and intuitive explanation for 
the best-performing model, RSF-TS, more than SHAP 
does. The output for TIME is a heatmap with the rows 
being the unique variables and the columns being time 
steps, regardless of the transformation done on the tra-
jectories. Besides providing a global importance variable 
ranking, TIME shows the window of importance for each 
variable and whether the ordering within the window is 
important.

One interesting finding is that in some time-varying 
variables, the important window was in earlier time steps 
than in later time steps. To be specific, TIME identified 
three variables of which measurements in early adult-
hood were more important for lifetime CVD prediction 
than those in the middle-age stage in this cohort: smok-
ing status, LDL, and parent history of heart problems. 
These findings on smoking and LDL suggest that the 
presence of cumulative effects from a young age may 
cause irreversible organ damage and permanently ele-
vates long-term CVD risk, regardless of the change in 
those risk factors at an older age. Several reports support 
these findings, such as long-term smoking may cause 
irreversible arterial stiffness, and passive exposure to 
cigarette smoke since childhood might cause irreversible 
damage in endothelium-dependent vasodilation [67]. For 
LDL, the importance of LDL in early adulthood for long-
term CVD risk is plausible since it is a major pathogenic 
contributor to atherogenesis and a marker of endothelial 
dysfunction [68]. The effect of LDL cholesterol on the risk 
of CVD has been stated to be both causal and cumulative 
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over time [69]. Parent’s heart problem at the participant’s 
young age is plausible as genetics could be an attribu-
tion to the participant’s CVD risk, while CVD problems 
at the old age could be due to many environmental and 
lifestyle factors. Regarding other important variables, 
TIME noted the information across all time points from 
young adulthood to the last observed values in DBP, 
SBP, Glucose, BMI, waist girth, and lipids (cholesterol, 
triglycerides, and HDL), highlighting the importance of 
cumulative effects of these risk factors in long-term CVD 
prediction for young adults. TIME is particularly suited 
in studying trends at the level of the population.

Overall, we demonstrate how different model explain-
ability methods work to explain ML survival models 
incorporating longitudinal data. Trajectory clustering 
coupled with RSF-VIMP and SHAP provides the most 
intuitive explanations, while TIME is suitable for models 
using raw time series as input or using complex feature 
engineering as input.

Limitations and future directions
A limitation of our study is not being able to cover many 
methods and different variations within each mode-
ling strategy. For example, there are several methods in 
JM, such as the joint latent class model and joineRML 
[70, 71], and DL longitudinal survival methods such as 
MATCH-Net [23]. With the growing new methods intro-
duced, it can become intractable to include all methods. 
However, for this comparative study, we tried to pick 
one representative method from each modeling strategy, 
usually from the most cited papers. Another limitation 
is we do not have an external validation as CARDIA is a 
unique cohort with 30 years of follow-up, and our study 
would benefit from validation in other large cohorts of 
younger-aged individuals. The number of CVD events 
by the end of follow-up was relatively small. In addition, 
the CARDIA study consists of Black and White partici-
pants in the US with baseline data collected in 1985, and 
thus the results from this work may not be transferable 
to other populations of different demographic character-
istics. Future direction of this work includes investigat-
ing dynamic prediction, which updates the participant’s 
CVD risk with new data information. JM and Dynamic-
DeepHit are most suitable for dynamic prediction, and 
we did carry dynamic prediction using Dynamic-Deep-
Hit in the Supplement, but the other modeling strategies 
would require training new models at every landmark 
time and thus would complicate the analysis. Competing 
risks or outcomes with recurrent events are also outside 
of the scope of this study. Lastly, it is important to note 
that explainability methods like RSF-VIMP, SHAP, and 
TIME do not imply causality. Another future direction of 

this work is to explore and validate the usability of this 
work in clinical settings.

Conclusion
In conclusion, we demonstrate the added value of multi-
variate longitudinal data in predictive accuracy and epi-
demiological utility in CVD prediction in young adults 
both at the population and individual levels. Using a 
unified framework that evaluates and compares model 
performance and explainability in six different strategies 
of analysing longitudinal data, we argue that spatial and 
temporal interpretability should be emphasized when 
opting for a method. The trajectory clustering approach 
coupled with RSF provides the most intuitive explana-
tions while still maintain comparatively good predictive 
performance. The comparative interpretability analysis 
reveals insights about the effects of the risk factors’ tra-
jectory history on cardiovascular risk development in 
young adults. Our framework could be extended to a 
higher number of variables and other methods dealing 
with repeated measures to better utilize longitudinal 
data.
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