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Introduction

e Electrocardiography (ECG) serves as a crucial tool for identifying and classifying cardiovascular diseases
by capturing the heart's electrical activity.

e |tis particularly useful for diagnosing conditions like ischemic heart disease, myocardial infarction,
arrhythmias, and cardiomyopathy.

e Its analysis offers non-invasive and repeatable monitoring without discomfort to patients, facilitated by
cost-effective equipment.

e Challenges include labor-intensive analysis, limited sensitivity to sporadic arrhythmias,
placement-dependent accuracy, and susceptibility to noise and artifacts.
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Integration of Machine Learning (ML) and Deep Learning (DL) in ECG Analysis

- ML and DL models show promise in enhancing ECG interpretation, potentially enabling

continuous monitoring and improving accuracy.
- These models can automate analysis, standardize interpretations, and handle temporal
variations in ECG signals, leading to improved detection and classification of arrhythmias.



Introduction

Progress and Challenges in DL-Based Arrhythmia Detection

DL methods demonstrate significant advancements in detecting various arrhythmias, leveraging their

ability to interpret temporal variations in ECG signals.
Despite progress, challenges remain in the comprehensive survey and analysis of recent DL works,

especially in guiding novice researchers.



Introduction

Contributions

e This work presents an introductory tutorial aimed at enabling new researchers to quickly grasp the
technical aspects of arrhythmia detection and classification.

e |t focuses on superior-performing DL models, provides a compilation of relevant datasets, and
establishes guidelines and pipelines tailored for novice researchers.






The study focused reviewing on studies
published from January 2017 to January
2023
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Medical Background



Normal Sinus Rhythm (NSR)
- — Heart rate 60-100 bpm
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Medical Background: Arrhythmias

Tachyarrhythmias
- Supraventricular Tachyarrhythmias

- Ventricular Tachyarrhythmias

Bradyarrhythmias
- Sinus Node Dysfunction

- Atrioventricular (AV) Conduction
Disorders
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Tachyarrhythmias

For example, L :

- Supraventricular Tachyarrhythmias - S :
Atrial Fibrillation (AF)

Atrial Flutter (AFL)
Paroxysmal
Supraventricular
Tachycardia (PSVT)

- Ventricular Tachyarrhythmias

Bradyarrhythmias

- Sinus Node Dysfunction

- Atrioventricular (AV) Conduction
Disorders
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Tachyarrhythmias

- Supraventricular Tachyarrhythmias For example,

Ventricular :
Tachycardia (VT)
Ventricular
Fibrillations (VF)

- Ventricular Tachyarrhythmias

Bradyarrhythmias
- Sinus Node Dysfunction

- Atrioventricular (AV) Conduction ,
Disorders LeadDl |
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Resulting in slower heart rhythm,

Tachyarrhythmias which is less than 60 bpm

- Supraventricular Tachyarrhythmias I
: 42
I

- Ventricular Tachyarrhythmias

Lead II

Bradyarrhythmias
- Sinus Node Dysfunction

- Atrioventricular (AV) Conduction
Disorders




Tachyarrhythmias
- Supraventricular Tachyarrhythmias

- Ventricular Tachyarrhythmias

Bradyarrhythmias
- Sinus Node Dysfunction

- Atrioventricular (AV) Conduction
Disorders

Due to anomalies in the passage of
electrical impulses between the
atria and ventricles, it can produce
different degree of blocks such as
First degree AV block
Second degree AV block
Third degree AV block




Medical Background: Readings of ECG

QRS
Complex ; Q wave wn
R wave msm
S wave ===

‘Baseline ; QT Interval

FIGURE 2
Schematic representation of an ECG Signal with its various intervals marked (Adapted with permission from Nayan and Ab Hamid, 2019).



Medical Background: Readings of ECG

Standard
12-lead ECG
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Medical Background: Readings of ECG

QRS
: Complex ;
D

Figure ref. [2]

- Atrial depolarization
- Resulting in atrial contraction and

the initiation of ventricular filling

P waveform shape, duration, or amplitude "
anomalies may indicate conditions including
- Atrial enlargement
- Conduction problems
- Atrial arrhythmias
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Medical Background: Readings of ECG

QRS
; Complex
:ﬁ:
; ® i
P
Deviations in the duration, amplitude, or E 5
shape of the QRS complex may indicate i 5
- Ventricular hypertrophy ! ! .. Aemapex
= Bundle branch blockages E 5
- Ventricular arrhythmias E E
o | !
 Segment
L=

PR Interval

“Baseline . QT Interval

<

Ventricular depolarization
Resulting in ventricular
contraction, or pumping

blood out of the ventricles



Medical Background: Readings of ECG

QRS
. Complex ;

Purkinje fiber Heart apex

- Ventricular repolarization
in order to return its resting
conditions

T wave shape, amplitude, or duration

changes may suggest .
- Myocardial ischemia :
- Electrolyte imbalances
- Drug effects

o @
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Medical Background: Readings of ECG

- PR interval represents the time necessary to
initiate atrial depolarization, atrioventricular
conduction, and ventricular depolarization

Prolonged PR intervals might indicate
- AV conduction delays or AV blocks.
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Medical Background: Readings of ECG

QRS
: Complex ;

Purkinje fiber Heart apex

- ST segment stands for the time
elapsed between depolarization
(QRS) and repolarization (T-wave)
of ventricles.

o

Changes in the ST segment, such as elevation or
depression, might provide important information
about myocardial ischemia or damage.
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Medical Background: Readings of ECG

t

I

Purkinje fiber Heart apex

- QT interval denotes the
s whole period of ventricular
: contractions

: ST
. Segment
>

QT prolongation can increase the risk of
ventricular arrhythmias, which could lead
to death.
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Public Databases



Annotation types

coresponding to cardiac events
and conditions

Atrial Fribillation (AF)

Atrial Fribillation (AF)

Ventricular arrhythmias
Ventricular arrhythmias

Ventricular arrhythmias

Normal Sinus Rhythm (NSR)

Normal Sinus Rhythm (NSR)

Multiclass arrhythmias
with multiclass labels

Multiclass arrhythmias

Multiclass arrhythmias

Multiclass arrhythmias

Multiclass arrhythmias

Multiclass arrhythmias

Supraventricular arrhythmia (SVT)
ST and T-wave change

Arrhythmia detector assessment in
noisy settings

Presence of Apnea

Notable

- Arrhythmia detection

- Automated diagnosis of heart conditions
- Signal qaulity assessment

- Anormaly detection

The dataset is widely used for its large
number of data points and patient pool

Is the most utilized for detecting and
classifying arrhythmia

Databases

Long-Term AF Database (LTAFDB)

MITBIH Atrial Fibrillation Database

MIT BIH Malignant Ventricular Ectopy Database

Sudden Cardiac Death Holter Database (SCDDB)

The Creighton University Ventricular Tachyarrhythmia
Database (CUDB)

MIT BIH Normal Sinus Rhythm Database

Normal Sinus Rhythm RR Interval Database (NSRDB)

China Physiological Signal Challenge 2018 (CPSC 2018)

PTB Diagnostic ECG Database

Georgia 12-Lead ECG Challenge Database (GAI2ECG)

MIT-BIH Arrhythmia Database

St Petersburg INCART 12-lead Arrhythmia Database
(INCARTDB)

The PhysioNet Computing in Cardiology Challenge 2017
(AFDB)

MIT-BIH Supraventricular Arrhythmia Database (SVDB)

European ST-T Database
MIT-BIH Noise Stress Test Database (NSTDB)

Apnea-ECG Database

Records

84 records

25 records

22 records
23 records

35 records

18 records

18 records

6,877 records

549 records

20,672 records

48 records

32 records

12,186 records

78 records

90 records
12 records

70 records

Leads

NA

2

2

Time

24-25 h each

10 h each

30 min each
24-48 h each

8 min each

24 heach

24 heach

6-60 s each

10 s each

5-10 s each

23-48seach

30 min each

30-60s each

30 min each

2heach
30 min each

7-10 h each

Boston's Beth Israel Deaconess Medical Center

Massachusetts Institute of Technology (MIT) + Boston's Beth Israel
Deaconess Medical Center

Massachusetts Institute of Technology (MIT) + Boston's Beth Israel
Deaconess Medical Center

Boston area hospitals
Creighton University Cardiac Center

Massachusetts Institute of Technology (MIT) + Boston’s Beth Israel
Deaconess Medical Center

Washington University School of Medicine + Columbia-Presbyterian
Medical Center

1 hospitals across China

Physikalisch-Technische Bundesanstalt (PTB), the National Metrology
Institute of Germany

Emory University, Atlanta, Georgia, United States of America

Massachusetts Institute of Technology (MIT) + Boston's Beth Israel
Deaconess Medical Center

St. Petersburg Institute of Cardiological Technics (Incart), St. Petersburg,
Russia

Compiled by PhysioNet aliveCor healthcare device

Massachusetts Institute of Technology (MIT)
CNR Institute for Clinical Physiology + European Society of Cardiology

Massachusetts Institute of Technology (MIT) + Boston's Beth Israel
Deaconess Medical Center

Phillips-University, Marburg, Germany



Datasets

These 15 classes (J) Nodal (Junctional) Premature Beat
The Association for the Advancement (Nou.) Normal Beat S Supraventricular Premature Beat
of Medical Instrumentation (AAMI) (L) Left Bundle Branch Block Beat (V) Premature Ventricular Contraction
recommends training and detecting only (R) Right Bundle Branch Block Beat (E) Ventricular Escape Beat
a few types of arrhythmia by using these ®  (e) Atrial Escape Beat (F) Fusion of Ventricular and Normal Beat
15 classes, which are classified then into (j) Nodal (Junctional) Escape Beat (Pou) Paced Beat
five superclasses. (A) Atrial Premature Beat (f) Fusion of Paced and Normal Beat

(a) Aberrated Atrial Premature Beat (U) Unclassified Beat

TABLE 2 Classes of ECG Signals used to training. *

Superclasses

SupraVentricular Ectopic Beat Ventricular Ectopic Beat Fusion Beat Unknown Beat
(SVEB) (VEB) (F) ((¢))

(Nou.) Normal Beat (A) Atrial Premature Beat (V) Premature Ventricular Contraction (F) Fusion of Ventricular and Normal Beat (Pou) Paced Beat

(L) Left Bundle Branch Block Beat (a) Aberrated Atrial Premature Beat ‘ (E) Ventricular Escape Beat ‘ (f) Fusion of Paced and Normal Beat
(R) Right Bundle Branch Block Beat (3) Nodal (Junctional) Premature Beat (V) Unclassified Beat

(e) Atrial Escape Beat S Supraventricular Premature Beat ‘

(j) Nodal (Junctional) Escape Beat
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Deep Learning Techniques

Multilayer Perceptron (MLP)
Convolutional Neural Network (CNN)
Recurrent Neural Network (RNN)
Long Short-Term Memory (LSTM)
Gated Recurrent Unit (GRU)

Deep Belief Network (DBN)
Transformer



Deep Learning Techniques

e Inputdata

A fixed-length segment
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DL models

. (N) Normal Beat

(SVEB) SupraVentricular Ectopic Beat

. (VEB) Ventricular Ectopic Beat -t
. (F) Fusion Beat :

: (Q) Unknown Beat




Deep Learning Techniques

e Multilayer Perceptron (MLP)

The model can capture complex patterns
related to various arrhythmias because the
hidden layers learn to extract higher-level
representations and patterns from the
input data.

input layer




Deep Learning Techniques

Input signal

1D
Convolution

1D
Convolution

e Convolutional Neural Network (CNN)

They are fit at identifying spatial hierarchies i - .
or patterns using stacked trainable small !
filters called kernels, which these kernels i

may effectively extract local information
from the context of ECG data, such as the

shape and duration of heartbeats. Convolutional ~ Number of
Kernel eigenvectors:32
1

Figure ref. [4]

4
Convolutional ~ Number of
Kernel size:10  eigenvectors:64

Convolutional Number of
Kernel size:15 eigenvectors:128

i s e

Convolutional Pooling Convolutional Pooling Convolutional Pooling Fully-Connected Layer Ouput Layer
Layer 1 Layer 1 Layer 2 Layer 2 Layer 3 Layer 3 4 Y 516
datalength:2700 datalength:540 datalength:108

1D Conventional Neural Network | Figure ref. [3]



Deep Learning Techniques

e Recurrent Neural Network (RNN)

The network is equipped with feedback
mechanisms that are fit to capture
temporal correlations from time series data,
which are exceptionally well suited for ECG
analysis, where the sequential nature of
cardiac rhythms is essential for spotting
anomalies.

Input layer Hidden|layers Output layer

Figure ref. [5]



Deep Learning Techniques

e Long Short-Term Memory (LSTM)

LSTMs present Memory cells that retain
information and Gates that govern the flow

of information into ‘and out of these cells, - P
which these gates allow LSTMs to learn and & <@
retain:longer sequences.

| forget  input output
1

e

? Figure ref. [4]




Deep Learning Techniques

e Gated Recurrent Unit (GRU)

GRUs, which distinguish themselves from
LSTMs by their update and reset gates,

manage the flow of information by 1
selectively remembering pertinent
information and discarding. Reset gate  Update gate
4 ___l___\ _._I__\ ) Iht
4 \
]
7 8- g
t-1 4
|

~
T g

-

Figure ref. [6]



Deep Learning Techniques

Deep Belief Network (DBN)

- DBN comprises several layers of Ilatent
variables or ‘hidden units’, which are typically
made up of Restricted Boltzmann Machines
(RBMs) by creating overlapping stacks of the
RBM models since the hidden layer of one
model is the visible layer of the next one.

- DBNSs help develop robust and discriminative
models by discovering complex patterns inside
datasets using the probabilistic model, which
enables them to generate top-down models.

Feature 1
Feature 2
Feature 3
Feature 4

Feature n

Figure ref. [7]



Transformer

Transformers employ self-attention mechanisms to
learn complicated patterns and connections within
time-series data, which allows the model to assess
both local and global patterns at the same time.

Qutput
Probabilities

Add & Norm
Feed
Forward
l Add & Norm IT:
L——-—-———JAdd N i Multi-Head
Feed Attention
Forward D) Nx
—— ]
Nix Add & Norm
(->| Add & Norm | Ve
Multi-Head Multi-Head
Attention Attention
1 1
o J —' )
Positional & @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure ref. [8]



Deep Learning Techniques

To be summarized...

Multilayer Perceptron (MLP)

Pattern recognitions

Lack of temporal connections

Convolutional Neural Network (CNN)

Pattern recognitions

Lack of long-term dependency due to a fixed receptive field size

Recurrent Neural Network (RNN)

Temoral connections

Lack of long-term dependency probplem due to the vanishing gradient

Long Short-Term Memory (LSTM)

Long-term dependencies in the temporal data

Computationally more expensive than straightforward models like RNNs or MLPs

Gated Recurrent Unit (GRU)

Long-term dependencies in the temporal data

Computationally more expensive than straightforward models like RNNs or MLPs

Deep Belief Network (DBN)

Pattern recognitions

Requires huge data to perform better techniques and much computation

Transformer

Pattern recognitions and long-term dependencies

Less simple, require much computation, and need different hyperparameters to
adjust
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Results and Discussion

TABLE 3 Summary of deep learning models for ECG arrhythmia detection and classification.

Study Database #Cl  Classifier Acc (%) Se (%) Sp (%)
Luo et al. (2017) MIT-BIH 4 DNN-SDA 98.80 71.40 99.80
Majumdar and Ward (2017) MIT-BIH 4 SVM-RBF 97.00 100.0 90.12
Zhang et al. (2017) MIT-BIH 5 RNN 99.40 97.60 99.70
Xia et al. (2017) MIT-BIH 3 CNN 98.63 98.79 97.87
Nguyen et al. (2018) CUDB MIT-BIH (VEDB) 2 FCN 99.26 97.07 99.44
Jun et al. (2018) MIT-BIH 4 2D CNN 99.05 99.57 97.85 TABLE4 Fi-scores of deep learning models for ECG detection and
Yildirim (2018) MIT-BIH 4 Bi-directional LSTM 99.39 95.66 98.11 Study Database #Cl Classifier F1-Score(%)
Sannino and De Pietro (2018) MIT-BIH 4 DNN 99.68 99.48 99.83 Luzetal. (2016) MIT-BIH 5 GRNN 99.00
Faust et al. (2018) MIT-BIH 5 BILSTM 98.51 98.32 98.67 Sujadevi et al. (2017) MIT-BIH 4 GRU 99.99
Xia and Xie (2019) MIT-BIH 4 1D CNN + Active Learning | 99.20 95.73 98.73 Faust et al. (2018) MIT-BIH 5 BiLSTM 98.00
Lui and Chow (2018) MIT-BIH 4 ML-CNN 96.00 95.40 97.37 Tan et al. (2018) Fantasia + INCARTDB 2 CNN-LSTM 99.52
Xia et al. (2018) MIT-BIH Wearable Device 4 DNN 99.80 99.40 99.90 Xiang et al. (2018) MILE 8 IDERY 9999
Wang et al. (2019) MIT-BIH 2 GRNN 97.40 86.70 98.30 Hammadetal' (2020 MIT:BIH 5 DNN 9330

Mahmud et al. (2020) MIT-BIH 5 1D CNN 99.10
Hanbay (2019) MIT-BIH 4 DNN 96.40 86.41 96.41

Ullah et al. (2020) MIT-BIH 8 2D CNN 98.00
Wang and Zhou (2019) BIDMC-CHF + MIT-BIH NSR + Fantasia = 5 LSTM 99.22 99.22 99.72

Peimankar and Puthusserypady (2021) QTDB 4 CNN-LSTM 99.56
Chen etal. (2020) MIT-BIH 4 CNN-LSTM 99.32 97.50 98.70

Islam et al. (2022) MIT-BIH 5 BiGRU + BiLSTM 98.41
Fu et al. (2020) PTB 6 CNN-BiGRUt 99.11 99.02 98.23

Hong et al. (2022) MIT-BIH 4 ECG Delineator 96.11
Sharma et al. (2021) MIT-BIH 5 SVM + FFBPNN 98.53 98.24 95.68 R Sp—— s F— e
Ojha et al. (2022) MIT-BIH 4 CNN-SVM 99.53 98.24 97.58 Wi gkal (3i28) NT-BiEE . Feshiek o BILSTAL 5550

pahvand and Abdali-Mohammadi (2022) | Chapman ECG DB 12 Distilled Models 98.15 97.11 9845 Sepahvand and Abdali-Mohammadi (2022) Chapman ECG DB 12 Distilled Models 97.55

Midani et al. (2023) MIT-BIH 5 CNN + BiLSTM 99.46 97.01 99.57 Midani et al. (2023) MIT-BIH 5 CNN + BiLSTM 97.63
Kumar et al. (2023) MIT-BIH 5 Fuzz-ClustNet 98.66 98.92 93.88 Kumar et al. (2023) MIT-BIH 5 Fuzz-ClustNet 9634




Accuracy assesses overall Together, these metrics offer a

model performance : nuanced evaluation ensuring

balanced performance across
all categories.

Sensitivity measures the :
R T RIETETLELELRLEEEE ability to detect arrhythmias — -------- :

TABLE 3 Summary of deep learning models for ECG arrhythmia detection and classification. : accurate /y
Study Database #Cl  Classifier Acc(%) Se (%) Sp (%) : F1 scores provide a balanced
Luo et al. (2017) MIT-BIH 4 DNN-SDA 98.80 71.40 99.80 : assessment of m odef
: e e erformance, revealin
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Yildirim (2018) MIT-BIH 4 Bi-directional LSTM 99.39 95.66 98.11 Study Database #Cl Classifier F1-Score(%)
Sannino and De Pietro (2018) MIT-BIH 4 DNN 99.68 99.48 99.83 Luzetal. (2016) MIT-BIH 5 GRNN 99.00
Faust et al. (2018) MIT-BIH 5 BiLSTM 98.51 98.32 98.67 Sujadevi et al. (2017) MIT-BIH 4 GRU 99.99
Xia and Xie (2019) MIT-BIH 4 1D CNN + Active Learning | 99.20 95.73 98.73 Faust et al. (2018) MIT-BIH 5 BILSTM 98.00
Lui and Chow (2018) MIT-BIH 4 ML-CNN 96.00 95.40 97.37 Tan et al. (2018) Fantasia + INCARTDB 2 CNN-LSTM 99.52
Xia et al. (2018) MIT-BIH Wearable Device 4 DNN 99.80 99.40 99.90 Xiang et al. (2018) | MITBIH 8 1D CNN | 999
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T T Ullah et al. (2020) MIT-BIH 8 2D CNN 98.00
Wang and Zhou (2019) BIDMC-CHF + MIT-BIH NSR + Fantasia = 5 LSTM 99.22 99.22 99.72 :
Peimankar and Puthusserypady (2021) QT DB 4 CNN-LSTM 99.56
Chen et al. (2020) MIT-BIH 4 CNN-LSTM 99.32 97.50 98.70
- Islam et al. (2022) MIT-BIH 5 BiGRU + BiLSTM 98.41
Fu et al. (2020) PTB 6 CNN-BiGRUt 99.11 99.02 98.23
Hong et al. (2022) MIT-BIH 4 ECG Delineator 96.11
Sharma et al. (2021) MIT-BIH 5 SVM + FFBPNN 98.53 98.24 95.68 it i) S—— . P— o
Ojha et al. (2022) MIT-BIH 4 CNN-SVM 99.53 98.24 97.58 Kol (o) T — s Resitels BHSTHE -
pahvand and Abdali-Moh di(2022) | Chapman ECG DB 12 Distilled Models 98.15 97.11 98.45 Sepahvand and Abdali-Mohammadi (2022) Chapman ECG DB 12 Distilled Models 97.55
Midani et al. (2023) MIT-BIH 5 CNN + BiLSTM 99.46 97.01 99.57 Midani et al. (2023) MIT-BIH 5 CNN + BiLSTM 97.63
Kumar et al. (2023) MIT-BIH 5 Fuzz-ClustNet 98.66 98.92 93.88 Kumar et al. (2023) MIT-BIH 5 Fuzz-ClustNet 9634
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Results and DiSCUSSion: Deep Learning Techniques analysis

- CNNs are typically preferred for ECG due to strong feature extraction, while RNNs fit time series nature.

- Transformers with attention mechanisms signify significant progress in DL models.

- Hybrid DL models, especially with transformers, outperform shallow ones, using CNNs for initial extraction and
transformers/RNNs for precise features.

- Hybrid models improve accuracy but raise computational complexity.

- Trends include combining Vision Transformers and MLPMixer with traditional models.

- Interpretable DL models are crucial for clarity in ECG classification.

- Integrating DL with Al frameworks like active learning enhances diagnostic accuracy.

- Systematic optimization of DL architectures and hyperparameters boosts efficiency.

- Challenges include mapping complexity and data scarcity in increased categories.

- Constant innovation and optimization are key to advancing ECG arrhythmia classification.



Results and Discussion: Arrhythmia Data analysis

Intertextual analysis of literature reveals insights into current research directions and limitations, focusing on
data quality, public ECGC database use, and data imbalance.

Data quality is essential for robust classification, emphasizing the need for diverse training data.

Reliance on public ECG datasets has limitations, requiring more diverse samples.

Rising model complexity demands comprehensive ECG data for practical training.

Merging data from multiple databases is crucial but necessitates careful evaluation.

Imbalance in data categories is a significant hurdle, addressed by augmentation and focal loss.

Acquiring new data in abnormal categories is practical but poses challenges.

Arrhythmia detection and classification involve a complex multiclass task.

Studies use databases like MIT-BIH, CUDB, and AFDB for classification and detection of significant arrhythmias.
PhysioNet/CinC Challenge datasets classify AF, NSR, and other rhythms considering noise.

Patient-specific characteristics impact arrhythmia types, emphasizing tailored methodologies.

A broader perspective highlights the multifaceted nature of arrhythmia classification research, emphasizing the
need for customized solutions.

Insights illustrate complexities, indicating areas for further research and innovation.



Database selection stage

Preprocessing
stage

Segmentation
stage

Feature
extraction stage

Classification
stage

Evaluation stage

- Use the standard
MIT-BIH database,
allowing for impartial
comparisons with
previous studies.

- Examine the model’s
generalization
capabilities by
including the INCART
database into the
assessment
procedure

- Use standard signal
filtering techniques
to permit direct
comparisons with
current literature.

Employ the unfiltered
raw signal as the
ground truth to
correctly assess the
model's performance.

- Introduce variability
to the R-location
annotation during
the assessment
process to evaluate
the model's
resilience.

Utilize
state-of-the-art
feature selectors to
extract salient
features

The use of
class-oriented feature
selection can provide
useful insights into
selecting significant
features for various
forms of arrhythmias

- Implement a k-fold
cross-validation
training pipeline to
ensure unbiased
model training.

- Address dataset
imbalances
associated with
certain heartbeat
types by using data
augmentation
techniques.

- Employ standardized
metrics to enable fair
and unbiased
comparisons
between the
proposed
methodology and
existing literature.



Conclusion

DL algorithms show promise for ECG arrhythmia detection, with potential for clinical
use. The review in this study offers tailored suggestions for novice researchers, highlighting
the importance of exploring diverse ECG databases, developing integrated DL models, and

facilitating adoption in clinical practice.



Next Presentation

As mentioned previously in the discussion part that CNNs are traditionally favored for
ECG detection and classification, next presentation would be provided regarding an
application of the CNN-based architecture utilizing Transfer learning technique to detect AF,

which is the most common heart arrhythmia.
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