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Cardiovascular diseases are a leading cause of mortality globally.
Electrocardiography (ECG) still represents the benchmark approach for
identifying cardiac irregularities. Automatic detection of abnormalities from the
ECG can aid in the early detection, diagnosis, and prevention of cardiovascular
diseases. Deep Learning (DL) architectures have been successfully employed
for arrhythmia detection and classification and offered superior performance to
traditional shallow Machine Learning (ML) approaches. This survey categorizes
and compares the DL architectures used in ECG arrhythmia detection from
2017–2023 that have exhibited superior performance. Different DL models
such as Convolutional Neural Networks (CNNs), Multilayer Perceptrons (MLPs),
Transformers, and Recurrent Neural Networks (RNNs) are reviewed, and a
summary of their effectiveness is provided. This survey provides a comprehensive
roadmap to expedite the acclimation process for emerging researchers willing
to develop efficient algorithms for detecting ECG anomalies using DL models.
Our tailored guidelines bridge the knowledge gap allowing newcomers to align
smoothly with the prevailing research trends in ECG arrhythmia detection.
We shed light on potential areas for future research and refinement in model
development and optimization, intending to stimulate advancement in ECG
arrhythmia detection and classification.
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1 Introduction

Electrocardiography (ECG) represents a benchmark tool for detecting and
classifying cardiovascular diseases. ECG captures the heart’s electrical activity,
making it ideal for detecting cardiovascular diseases (Koppad, 2021). While ECG
is imperfect and may not be able to detect every pathology, it can often provide
critical information about the heart’s condition. It is mainly used for the diagnosis
of ischemic heart disease/coronary artery disease, myocardial infarction (heart
attack), arrhythmias (abnormal heart rhythms), and cardiomyopathy (heart muscle
disease). Given that arrhythmia is precipitated by malfunctions in the heart’s electrical
system, the ECG provides a directand non-invasive mechanism to examine these
conditions (Sun et al., 2021). It is non-invasive and hence presents no harm or
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discomfort to patients and can be repeatedly performed, facilitating
continuous monitoring for extended durations. Moreover, ECG
machines, like Holter monitors, are cost-effective and standard
apparatuses in medical establishments, thus ensuring their wide
availability. These devices offer swift, exhaustive data concerning
the heart, encompassing aspects such as heart rate, rhythm,
and evidence of possible pathologies. Established interpretative
guidelines for ECG traces contribute to the identification of
specific markers for diverse arrhythmia types (Aljohani, 2022).
Furthermore, the characteristics of ECG signals, coupled with
the substantial volume of ECG data obtainable, make them well
suited for application and analysis via machine learning (ML)
methodologies.

Despite the valuable role that ECGplays in arrhythmia detection
and classification, the analysis of ECG faces several challenges. A
traditional electrocardiographic analysis is often labor-intensive and
dependent on the expertise of skilled clinicians, which may lead
to interpretative discrepancies (Halford, 2009). Moreover, standard
ECG machines may not capture sporadic or transient arrhythmias
if they do not occur during recording, presenting a significant
drawback in their sensitivity. Furthermore, the requirement for
physical contact points (electrodes) and their placement could also
affect the accuracy of the recordings while potentially causing
discomfort to patients over extended periods. Accessibility in remote
areas or resource-limited settings may also pose challenges due to
the cost of equipment and the need for trained healthcare providers.
Additionally, ECG signals are susceptible to noise and artifacts, such
as powerline interference, muscle activity, electrode contact issues,
and motion artifacts, distorting the waveform and affecting analysis
accuracy. The noise contamination necessitates advanced signal
processing techniques for reliable interpretation. Consequently,
despite a negative ECG result, additional investigations may be
warranted for a thoroughmedical evaluation of the patient’s possible
conditions.

This sets the stage for developing and integrating automated,
low-cost systems employing deep learning (DL) and machine
learning models (Akkus et al., 2019). Such systems offer the
potential for continuous, real-time monitoring and more accurate
interpretation of ECG signals, thereby increasing the likelihood of
capturing intermittent arrhythmias. The use of ML and DL models
in ECG interpretation could also standardize analyses, reducing
the variability inherent in human interpretation and potentially
leading to improved patient outcomes (Ansari et al., 2023b). Thus,
it is essential to foster research and development in the promising
field of ML to realize its potential benefits fully.

DL methods have delivered promising results for a variety
of applications, including computer vision (Wu et al., 2017;
Ansari et al., 2023a), speech recognition (Deng and Platt, 2014),
signal analysis (Gao et al., 2021), classification, image, and pixel
analysis (Hausen and Robertson, 2020; Ansari et al., 2022c; Ansari
and Qaraqe, 2023), risk analysis (Akhtar et al., 2021; Ansari et al.,
2022b) and natural language processing (Bengio and LeCun, 2007).
Most ECG interpretation algorithms employ DL methodologies,
leveraging their inherent abilities to extract and process the
information in ECG time series for improved detection and
accurate classification. Some DL methodologies remove the need
for manual feature selection and extraction, offering automatic
feature selection and superior performance (Chandrasekar et al.,

2023). Advancements in DL techniques and ease of availability
of systems with higher computational capacity have catalyzed
significant progress in arrhythmia detection and classification. This
progress is fueled by DL’s inherent abilities to capture and interpret
temporal variations in ECG signals.This property allows DLmodels
to understand the different types of arrhythmias (Chu et al., 2023).
Prominent DL algorithms like Recurrent Neural Networks (RNNs),
Convolutional Neural Networks (CNNs), and Transformers
possess the ability to understand both short-term patterns within
individual heartbeats and long-term irregularities spanningmultiple
heartbeats (Attia et al., 2019). This property allows the detection
of conditions like Premature Ventricular Contraction (PVC) and
Atrial Fibrillation (AF), which depend on single heartbeats and
may require pattern identification across multiple heartbeats (Khan
and Kim, 2021). In cases wherein variations are required to be
observed in a specific beat, like in the conditions of Premature
Atrial or Ventricular Contractions, DL offers dynamic classifiers
that can preserve long-term memory, which is key in solving
such classification problems. Conversely, dynamic classifiers can
also preserve short-term memory, which allows them to address
conditions of Ectopic Beats characterized by deflection of the P-
wave from its usual sinusoidal form (Mathur et al., 2020). Overall,
DL exhibits inherent properties that make it ideal for rapid
learning and subsequent classification of cardiac arrhythmia and its
types.

Previous literature such as Bizopoulos and Koutsouris (2018),
Dewangan and Shukla (2015), Dinakarrao et al. (2019), and
Luz et al. (2016) have offered an overview of detection and
classification methods for arrhythmia up to the year 2019.
However, we identified a conspicuous void of comprehensive
surveys enveloping the recent years, with only a few works
like (Parvaneh et al., 2019; Teplitzky et al., 2020; Xiao et al.,
2023a) not considering studies past the year 2022. These
investigations have surveyed existing literature but need to
improve their provision of in-depth comparative chronological
analyses. To the best of our knowledge, no tutorial is tailored
explicitly for novice researchers, enabling them to assimilate the
current research trends in this domain quickly. This shortage
has highlighted the need to focus on the highest-performing
studies rather than indiscriminately collecting all existing
works.

For instance (Koppad, 2021), analyzes 25 papers published
from 2016 to 2020, primarily leveraging Convolutional Neural
Networks in their summary and mainly using the MIT-BIH
database. However, this work is not sufficiently comprehensive.
Similarly (Hong et al., 2020), reviews 191 papers, predominantly
published before 2019, exploring a variety of DL architectures for
ECG analytics tasks, yet it needs in-depth comparative analysis.
These papers need more intertextual analysis to guide novice
readers.

Reviews by (Ebrahimi et al., 2020; Hammad et al., 2021) present
detailed analyses of papers published within specific short periods
(2017–2018). In addition (Ebrahimi et al., 2020), does not focus
solely on DL, and (Hammad et al., 2021) reviews work on
shockable arrhythmia detection based on shallow ML and DL
methods.

Recent years have seen reviews like (Xiao et al., 2023a), which
map recent DL works (up to the year 2022) quite comprehensively.
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However, this review is not tailored for novice researchers and is
an indiscriminate compilation of DL works with little intertextual
summarization.

Diverging from other studies, our work exclusively provides an
introductory tutorial to enable new researchers to assimilate the
necessary technical knowledge on arrhythmia and its classification.
We provide insights into the performance and characteristics of
DL methods and their variants for ECG arrhythmia detection
from 2017 to the present. This overview highlights only the
DL models with superior performance above 96% in terms of
specificity, sensitivity, accuracy, and F1-score. This paper also
provides an exhaustive compilation of traditionally utilized datasets
to train the DL models for arrhythmia detection. Lastly, this
survey establishes guidelines and pipelines tailored for novice
researchers.

The main contributions of this paper are summarized next. This
paper offers the following.

• A comprehensive tutorial designed to enable starting
researchers to easily access all the information pertinent to
ECG anomalies detection and classification.
• A thorough description of the arrhythmia disease, its

types and classes used in detection and classification
applications.
• An exhaustive compilation of standard datasets that are

traditionally utilized to train and validate DL classifiers.
• A comparative analysis of the state-of-the-art DL models, while

providing intertextual comparisons to serve as guideline for
future work.
• A methodology pipeline to follow for addressing the DL

classification task of ECG signals, with the intention of fostering
the development of new contributions.

The rest of this review is organized as follows. In the
Methods section, we describe the methodology used to conduct a
thorough and unbiased assessment of the advancements achieved
in deep learning for detecting and classifying arrhythmias in
electrocardiograms. In the Deep Learning Techniques section,
we describe the various deep learning models used in ECG
signal processing. The Medical Background section provides the
required medical background and knowledge of arrhythmias and
their occurrences in ECG signals. The Datasets section discusses
datasets traditionally used for model training and validation,
emphasizing the importance of standardized and openly accessible
datasets. In the Results and Discussion section, we thoroughly
analyze and compare the performance of various DL algorithms
from the present literature, summarizing significant findings and
investigating prospective future research directions. The section
Guideline presents the workflow pipeline for developing ECG
arrhythmia detectors. Finally, the Conclusion section reinforces our
main findings and summarizes our work.

2 Methods

Our systematic review was designed to critically evaluate the
recent advancements in deep learning for identifying and classifying

ECG arrhythmias, thus serving as a valuable resource for researchers
in the field. We focused our review on studies published from
January 2017 to January 2023, marked by significant advancements
in DL, including introducing newmodels, such as transformers, that
have substantially contributed to ECG arrhythmia detection and
classification.

We devised a comprehensive and replicable search strategy
to ensure an exhaustive and unbiased review. We identified
key terms commonly found in current research studies on
detecting and categorizing various arrhythmia types using DL.
These included, but were not limited to, “Arrhythmia detection,”
“ECG arrhythmia,” “Ventricular arrhythmias,” “Supraventricular
arrhythmias,” “Premature beats,” “Heart block,” “Bradycardia,”
“Tachycardia,” “12-Lead ECG”, “Cardiac signal processing,” “Deep
learning in ECG,” and specific DL models such as “CNN,” “DNN,”
“LSTM,” “Transformers,” and “Hybrid models.”

Our search was conducted across four significant databases:
Google Scholar, PubMed, Scopus, and the Digital Bibliography
and Library Project. We combined our search terms with Boolean
operators to generate relevant search queries such as “Arrhythmia
detection AND deep learning,” “Arrhythmia classification AND
deep neural networks,” and “Ventricular arrhythmias AND
convolutional neural networks OR CNN.” Our search was focused
on studies published up until January 2023.

A total of 4,215 studies were initially identified, and after
removing duplicates and filtering out the papers based on their
titles, 2,492 unique studies remained. Out of the 2,492 unique
studies, 207 were excluded due to language barriers as they were
unavailable in English. A further 153 studies were excluded due
to the unavailability of full text, leaving us with 2,132 studies
for further screening. We screened these studies independently
by abstract and conclusion sections, excluding 2013 papers that
did not meet our predefined criteria. We then conducted a full-
text assessment of the remaining studies, excluding 41 that did
not meet our inclusion criteria; we had 78 studies. Studies were
included if they were published in English, used DL for arrhythmia
classification with ECG signals, and showed model performances
with an accuracy rate of 96% or higher. Studies focusing on tasks
other than arrhythmia detection, such as emotion detection or drug
and alcohol assessment, were excluded, as were studies without
available full text. This process was undertaken by two independent
reviewers (YA and OM) and validated by a third (ES) to ensure
unbiased results.

At the end of this process, 78 papers representing state-of-the-art
literature in the field were included in the review (Figure 1). While
our systematic review protocol was not registered, our methodology
is outlined clearly in this section for transparency. We conducted an
extensive intertextual analysis of the selected publications to identify
prevalent trends, common themes, and significant differences. This
review focuses on high-performing, cutting-edge methodologies
to capture an accurate snapshot of this field’s current state of
research. This approach allowed us to highlight the most promising
methods and recurring limitations, thereby identifying avenues for
future advancement in ECG arrhythmia detection and classification
using deep learning. While our review is comprehensive, a formal
risk of bias assessment was not conducted for the included
studies.
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FIGURE 1
Paper search and refinement process.

3 Deep Learning Techniques

This section presents an overview of DL methods commonly
employed in ECG data analysis for arrhythmia diagnosis. Deep
learning methods use artificial neural networks with multiple layers
to learn hierarchical representations of data. They are instrumental
in ECG analysis because they excel at extracting complicated
features from raw input data. Researchers have made considerable
advances in the accuracy of arrhythmia detection and classification
tasks by applying DL (Parvaneh et al., 2019). In this section, we
discuss fundamental DL techniques like the feedforward Multilayer
Perceptron (MLP), the locally receptive Convolutional Neural
Network (CNN), the sequence-aware Recurrent Neural Network
(RNN), the memory-adept Long Short-Term Memory (LSTM), the
simplified and efficient Gated Recurrent Unit (GRU), the generative
Deep Belief Network (DBN), and the attention-based Transformer
that have proven to produce excellent results to analyze ECG
data. This choice of these various strategies can be explained by
the distinct advantages that each one of them has in terms of
recording specific ECG signal pattern characteristics. We have
selected thesemethods because of their diverse strengths in handling
various types of data and learning challenges, which provide a
complete perspective of the potential of deep learning approaches
in ECG interpretation. By presenting these techniques, we aim
to understand better their strengths, limitations, and specialized
applications in improving arrhythmia detection. Throughout this
section, we discuss the principles underlying DL and emphasize

how these methods might improve the accuracy and efficiency of
arrhythmia analysis in clinical situations.

3.1 Multilayer Perceptron (MLP)

The Multilayer Perceptron (MLP) represents a variation of the
artificial neural network (ANN) comprising numerous layers of
interconnected nodes, commonly referred to as artificial neurons.
In order to produce an output, each neuron in an MLP takes
inputs, applies a weighted sum, and then passes the outcome via
an activation function. This multilayer structure is particularly well
suited for ECG data because it allows the model to accurately
represent higher-level, nonlinear relationships within the data,
which simpler models frequently struggle to do. Since MLPs can
accurately simulate complicated nonlinear interactions, they are
frequently used in DL approaches (Montesinos-López et al., 2021).
An MLP may be used as a potent tool for arrhythmia identification
and classification utilizing ECG data. The ECG data represents the
heart’s electrical activity, which may be preprocessed and separated
into fixed-length segments. The MLP then receives these segments
as input. The MLP can handle ECG segments of various lengths
and complexity levels attributable to its adaptability in input format,
which enables it to manage a variety of ECG signal properties.
Every input corresponds to a particular time interval or a feature
taken from the ECG signal.Themodel can capture complex patterns
related to various arrhythmias because the MLP’s hidden layers
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learn to extract higher-level representations and patterns from
the input data. The input segment of the MLP is intended to be
categorized into one of the specified arrhythmia classes by the
output layer of the MLP (Özbay et al., 2006). MLP models learn
to generalize and effectively categorize unknown ECG segments
by being trained on a labeled dataset of ECG segments with their
corresponding arrhythmia categories, making them a valuable tool
for arrhythmia detection and classification in clinical situations.
MLPs’ drawback is that they do not take into account the temporal
connections between input data, which can be significant in the
setting of ECG signals, where repeating patterns can signify certain
arrhythmias.

3.2 Convolutional neural network (CNN)

A Convolutional Neural Network (CNN) is a class of
artificial neural networks primarily used for signal analysis, image
recognition, pixel data, and natural language processing. They are fit
at identifying spatial hierarchies or patterns using stacked trainable
small filters called kernels (Hong et al., 2020). These kernels may
effectively extract local information from the context of ECG
data, such as the shape and duration of heartbeats, which are
essential for diagnosing arrhythmias. When working with raw ECG
data, one-dimensional convolutional neural networks (1D CNNs)
apply kernels along the temporal dimension (Nurmaini et al.,
2020b), whereas two-dimensional convolutional neural networks
(2D CNNs) deal with ECG data transformed into images and
other two-dimensional formats (Ansari et al., 2021). Examples
of such transformations include distance distribution matrices
that are derived from entropy computations (Gabrié et al., 2018)
as well as gray-level co-occurrence matrices (De Siqueira et al.,
2013) and beat-to-beat correlations (Wen et al., 2019). When
applied to ECG signal analysis, CNNs automatically learn and
extract relevant features from raw ECG signals, improving the
accuracy of arrhythmia detection. By recognizing characteristic
wave patterns, CNNs can differentiate between normal and
abnormal heart rhythms. However, because CNNs have a fixed
receptive field size, they might have difficulties processing lengthy
sequences. As a result, they might overlook long-term dependencies
in the information, which are crucial for understanding ECG
signals.

3.3 Recurrent neural network (RNN)

Recurrent Neural Networks (RNNs) stand for another class
of artificial neural networks equipped with feedback mechanisms
that are fit to capture temporal correlations from time series data.
RNNs are equipped with cyclic connections, which sets them apart
from conventional feedforward neural networks. Because of their
capacity to store temporal information, RNNs are exceptionally
well suited for ECG analysis, where the sequential nature of
cardiac rhythms is essential for spotting anomalies. This structure
allows them to retain information across time, making them
appropriate for ECG data processing (Khan and Kim, 2021).
The raw ECG signal must first undergo preprocessing to remove
noise and undesirable artifacts before identifying and categorizing

arrhythmias. The cleaned ECG data is then divided into equal-
sized segments, each corresponding to a heartbeat or a specific time
length.These segments are then supplied into the RNN as sequential
input vectors, allowing the network to understand the ECG data’s
underlying temporal dynamics. The RNN recognizes and extracts
pertinent characteristics from the ECG data as it navigates through
the sequence. It uses the learned features to identify and classify
arrhythmias (Zhou et al., 2018). However, a typical problem with
RNNs is the vanishing gradient problem, whichmakes it challenging
to train them to understand long-term dependencies. This problem
could hinder their ability to deal with lengthy ECG segments or
intricate sequential patterns. As a result, the intrinsic capacity of
RNNs to analyze sequential data paves the way for more accurate
and robust systems for arrhythmia detection and classification,
thereby playing a pivotal role in the detection and treatment of
cardiovascular diseases.

3.4 Long Short-Term Memory (LSTM)

Long Short-Term Memory Networks (LSTMs) are a form of
RNNs designed to recall data over extended periods, making them
ideal for sequential data (Zhou et al., 2018). LSTMs present unique
characteristics, such as memory cells that retain information and
gates that govern the flow of information into and out of these
cells. These gates allow LSTMs to learn and retain longer sequences,
which is crucial whenworkingwith ECGdata that exhibit significant
properties over long time scales. These features help overcome
the vanishing gradient problem common in standard RNNs. This
feature of LSTMs makes them particularly useful for problems
involving learning from temporal data sequences, such as ECG
signals (Khan and Kim, 2021). By converting the ECG signal into
sequential data segments, ECG data may be fed into an LSTM
for arrhythmia detection and classification. Each segment depicts
a sequence of electrical cardiac activities collected over a specific
period. The time-series data, which consists of sequential cardiac
cycles, is fed into the LSTM so that the interdependencies between
these heartbeats may be learned and modeled. Based on this learned
knowledge, the LSTM can identify and categorize arrhythmia
patterns, making it a valuable tool for the automated detection of
ECG cardiac arrhythmias. However, LSTMs are computationally
more expensive than more straightforward models like RNNs
or MLPs despite having more sophisticated features. It can be
challenging to meet this increased processing requirement, mainly
when working with big ECG datasets. Compared to conventional
approaches, LSTMs’ unique capacity to analyze and learn from
sequential data enables more precise and efficient identification and
categorization of arrhythmia.

3.5 Gated Recurrent Unit (GRU)

Gated Recurrent Units (GRUs) are a type of RNN and were
created to mitigate the vanishing gradient of standard RNNs.
This feature helped to improve their capacity to capture long-
term relationships in data. GRUs, which distinguish themselves
by their update and reset gates, manage the flow of information
by selectively remembering pertinent information and discarding
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irrelevant data (Esteban et al., 2016). This makes GRUs ideal
for tasks that require sequential data processing and long-term
dependency modeling, such as ECG signal analysis. ECG data may
be divided into several time-sequenced data blocks for detecting
and categorizing arrhythmias, each representing a sequence of
electrical cardiac activity during a specific period. The GRU
receives this time-series data, which is made up of sequential
heartbeats. The GRU learns and models the temporal connections
between these sequential heartbeats, permitting the detection and
categorization of arrhythmic patterns based on the learned temporal
features (Murat et al., 2020). GRUs, like LSTMs, are computationally
intensive, which can make them difficult to use with massive
ECG datasets. By utilizing GRUs’ unique capacity to analyze and
interpret sequential data, it is feasible to obtain more accurate
and efficient detection and categorization of cardiac arrhythmias,
improving prediction performance compared to previous
approaches.

3.6 Deep Belief Network (DBN)

Deep Belief Networks (DBNs) are a class of deep neural
networks comprising several layers of latent variables or ‘hidden
units’ with connections only permissible between layers, not
within levels (Sarikaya et al., 2014). DBNs are typically made
up of stacks of Restricted Boltzmann Machines (RBMs) or
autoencoders, in which the hidden variables of each layer serve
as the visible variables for the following layer. DBNs may help
develop robust, discriminative models by discovering complex
patterns inside datasets using the probabilistic model, which enables
them to generate top-down models. They are, therefore, appropriate
for applications requiring high-level data abstraction, such as
identifying arrhythmia-indicating hidden patterns in ECG signals.
DBNs may learn to represent ECG data in a way that captures the
significant patterns or characteristics in the data, which assists in
identifying irregular heartbeats and arrhythmias (Taji et al., 2017).
The drawback of DBNs is that they, like other deep learning models,
need a lot of labeled data for training, which can be difficult given
the lack of labeled ECG datasets.

3.7 Transformers

Transformers stand for an effective deep learning model
architecture that was first presented for natural language processing
applications and has since shown promise in several other
fields (Hu et al., 2022). They employ self-attention mechanisms to
capture long-term dependencies and background information more
successfully. Transformers equipped with attention mechanisms
may be used to learn complicated patterns and connections within
time-series data to identify and categorize arrhythmias in ECG
data (Yan et al., 2019). By modeling each ECG signal as a sequence
of data points, the transformer model can interpret the input
signal by responding to critical aspects and capturing temporal
relationships over the whole sequence. This property allows the
model to assess both local and global patterns at the same time.
Transformers are less simple to use because they require much
computation andmay need different hyperparameters, like attention

heads and model sizes, to adjust. The transformer model uses
its ability to evaluate and understand sequential data for more
precise and efficient identification and categorization of cardiac
arrhythmias.

4 Medical background

4.1 Arrhythmia

Arrhythmia refers to the condition of having an irregularity
or anomaly in the rhythm of the heartbeat. The normal heartbeat
follows a pattern known as sinus rhythm, in which electrical
signals are generated by the sinoatrial (SA) node in the heart’s
right atrium. These signals go through specialized routes known
as the conduction system and coordinate the contraction of
the heart’s chambers, resulting in a regular and synchronized
beating (Antzelevitch and Burashnikov, 2011). However, various
factors can disturb the regular heart-beating rhythms and lead
to arrhythmias. Arrhythmias are categorized into numerous kinds
according to their origin, mechanism, and characteristics. The
two broad categories are tachyarrhythmias and bradyarrhythmias.
Tachyarrhythmias are aberrant cardiac rhythms characterized by a
rapid heartbeat, whereas bradyarrhythmias manifest through a slow
heartbeat.

• Tachyarrhythmias is divided into supraventricular and
ventricular tachyarrhythmias.
• Supraventricular Tachyarrhythmias include Atrial

Fibrillation (AF), Atrial Flutter, and Paroxysmal
Supraventricular Tachycardia (PSVT). The most common
persistent tachyarrhythmia, atrial fibrillation, is caused
by disordered electrical impulses in the atria, resulting
in irregular and typically fast heartbeats. Atrial flutter is
identified by frequent, fast atrial contractions, as shown by
a sawtooth-shaped waveform on the ECG. PSVT manifests
as intermittent episodes of rapid heart rate stemming from
abnormal electrical pathways or re-entry circuits in the atria
or atrioventricular (AV) node.
• Ventricular Tachyarrhythmias include ventricular

tachycardia (VT) and ventricular fibrillation (VF). VT is
characterized by a fast cardiac rhythm that originates in
the ventricles and often exceeds 100 beats per minute.
It happens when aberrant electrical impulses cause the
ventricles to contract quicker. VF is a potentially fatal
arrhythmia that causes disorganized and chaotic electrical
activity inside the ventricles. If immediate care is not
initiated, VF limits efficient blood pumping and can result
in cardiac arrest.

• Bradyarrhythmias are typically caused by the conditions of
Sinus Node Dysfunction or Atrioventricular (AV) conduction.
• Sinus Node Dysfunction refers to a slow heart rhythm at

a rate lesser than average (generally less than 60 beats per
minute). It occurs due to abnormal electrical activity in
the Sinoatrial (SA) Node, which is responsible for starting
electrical signals in the heart.
• Atrioventricular (AV) Conduction Disorders are due to

anomalies in the passage of electrical impulses between the
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atria and ventricles. These disorders are of three types: first-
degree AV block, second-degree AV block, and third-degree
AV block. The second-degree AV block presents Type I
and Type II subclasses, and the third-degree AV usually
indicates the total heart block. First-degree AV block is
characterized by a delay in electrical conduction, resulting
in a longer ECG PR interval. Second-degree AV block
is defined as intermittent or partial electrical conduction
failure, with Type I characterized by a gradual lengthening
of PR intervals until a dropped beat occurs. Type II second-
degree AV block is characterized by intermittent non-
conducted atrial beats without gradual PR prolongation.
Third-degree AV block is characterized by a total electrical
signal blockage between the atria and ventricles, frequently
necessitating pacemaker installation for optimal heart rate
control.

Electrocardiogram (ECG or EKG) is one of the benchmark
approaches for detecting arrhythmia. An ECG analyzes the heart’s
electrical activity and converts it into line tracings on paper called
waves (Teich et al., 2000). An ECG scan depends on the placement
of electrodes, which are small plastic patches that stick to the
skin on certain spots on the patient’s chest, arms, and legs. These
electrodes record the electrical signals of the patient’s heart and
send them to a machine that maps the signals as waves for medical
diagnosis.

4.2 Readings of ECG

The ECG trace is made up of five major components, each
of which provides crucial information for the diagnosis of heart
disorders (Teich et al., 2000). Figure 2 shows a labeled visual
schematic of a standard ECG signal. The following are the five
components of an ECG trace.

• P wave represents the atria’s depolarization and subsequent
contraction. It depicts the propagation of electrical impulses
across the atrialmyocardium,which results in atrial contraction
and the initiation of ventricular filling. Conditions including
atrial enlargement, conduction problems, or atrial arrhythmias
may be indicated by P waveform, duration, or amplitude
anomalies.
• QRS complex comprises three different graphical deflections:

Q, R, and S. It reflects the depolarization and subsequent
contraction of the ventricles. The QRS complex reflects
electrical signal transmission through the ventricular
myocardium, resulting in the violent ejection of blood
from the ventricles. Deviations in the duration, amplitude,
or shape of the QRS complex may indicate ventricular
hypertrophy, bundle branch blockages, or ventricular
arrhythmias.
• T wave represents the ventricle’s repolarization or recovery

phase. It symbolizes the ventricular myocardium being
returned to its resting condition. T wave shape, amplitude,
or duration changes may suggest various cardiac problems,
such as myocardial ischemia, electrolyte imbalances, or drug
effects.

• U wave is an extra wave that is seen following the T
wave in some instances. It is thought to signify additional
ventricular recovery. Its clear physiological relevance and
clinical ramifications are currently being researched.
• PR interval denotes the time an electrical wave takes to travel

from the atria to the AV node and then to the ventricles. It
represents the time necessary to initiate atrial depolarization,
atrioventricular conduction, and ventricular depolarization.
Prolonged PR intervals might indicate AV conduction delays or
AV blocks.
• QT interval represents the entire duration required for

ventricular depolarization and repolarization. It denotes the
duration of ventricular systole. QT interval abnormalities,
particularly QT prolongation, may predispose people to
potentially fatal ventricular arrhythmias.
• ST segment stands for the time elapsed between depolarization

and repolarization of ventricles. It connects the T wave and the
QRS Complex. Changes in the ST segment, such as elevation
or depression, might provide important information about
myocardial ischemia or damage.

A thorough comprehension of these components, intervals,
and segments is required to interpret ECG results accurately.
Analyzing their properties, variations, and correlations helps to
diagnose various heart diseases and guides proper management and
treatment techniques. Arrhythmias can be asymptomatic or severe,
causing palpitations, dizziness, chest pain, shortness of breath, and
possibly loss of consciousness (Abbott, 2005). Arrhythmias are
frequently diagnosed and classified by examining ECG records,
which give vital information on the heart’s electrical activity.
Depending on the nature and degree of the arrhythmia, treatment
options may include medication, electrical cardioversion, catheter
ablation, or implanted devices such as pacemakers or implantable
cardioverter-defibrillators (ICDs). A thorough examination and
precise categorization of arrhythmias are required to develop
suitable treatment strategies and provide optimal patient care.

5 Datasets

This section covers the ECG datasets commonly used in deep-
learning models to detect cardiovascular diseases. These datasets
consist of ECG signals collected from patients and are annotated
with the corresponding cardiac events and conditions. These
datasets have played a crucial role in developing DL algorithms
for ECG signal processing, leading to notable advancements in
cardiovascular disease detection.

5.1 Creighton university ventricular
tachyarrhythmia database (CUDB)

The CUDB dataset includes 35 short-term ECG recordings of
patients with sustained ventricular tachycardia, ventricular flutter,
and ventricular fibrillation. Each record has 127,232 samples
and was recorded for 8 minutes. Each signal employed a 12-bit
resolution, encompassing a range of 10V for digitization.The signals
were passed through an active second-order Bessel low-pass filter.

Frontiers in Physiology 07 frontiersin.org

https://doi.org/10.3389/fphys.2023.1246746
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Ansari et al. 10.3389/fphys.2023.1246746

FIGURE 2
Schematic representation of an ECG Signal with its various intervals marked (Adapted with permission from Nayan and Ab Hamid, 2019).

This dataset was recorded and compiled at the Creighton University
Cardiac Center and is especially pertinent for studies that try to
detect and predict Ventricular Tachycardia (VT) and Ventricular
Fibrillation (VF) (Li et al., 2013).

5.2 MIT-BIH noise stress test database
(NSTDB)

The NSTDB was compiled by the Massachusetts Institute of
Technology (MIT) and Boston’s Beth Israel Deaconess Medical
Center (Moody et al., 1984). It records twelve 30 min long ECG
recordings. It also contains three half-hour noise recordings. The
ECG gathered had no element of noise, making it less practical for
applications. Two noise-free recordings (numbered 118 and 119)
from the MIT-BIH Arrhythmia Database were added to add noise
to the data.The noise was introduced after the first 5 minutes of each
record during 2-min parts alternating with 2-min clear segments.
This dataset may be used to assess the resilience and reliability of
arrhythmia detectors in noisy environments.

5.3 St petersburg INCART 12-lead
arrhythmia database (INCARTDB)

The INCARTDB records 75 long-term 12-lead ECG recordings,
with each recording having a duration of 30 min. The signals
were sampled at 257 Hz. The data was collected from 17 male

and 15 female patients, all between the ages of 18 and 80 years.
This dataset records data of patients undergoing tests for coronary
conduit illness. While no patients had an implanted pacemaker, the
majority had ventricular ectopic beats. St. Petersburg Institute of
Cardiological Technics (Incart), St. Petersburg, Russia, compiled this
dataset, and it serves as a standard dataset for multiclass arrhythmia
characterization (Tihonenko et al., 2008).

5.4 Long-term AF database (LTAFDB)

The LTAFDB dataset records 84 long-term two-lead ECG
recordings of subjects with paroxysmal or supported Atrial
Fibrillation (AF) conditions. Each recording had a duration
between 24 and 25 h. Each signal was sampled at 128 Hz,
employing a 12-bit resolution, encompassed a range of 20 mV
for digitization. Two prominent annotations are available for
the ECG; a computerized QRS identifier created the QRS
annotations, and the ATR annotations were manually edited
through a mechanized ECG examination framework. This
dataset was compiled by Boston’s Beth Israel Deaconess Medical
Center.

5.5 MIT-BIH arrhythmia database

This dataset is the most utilized dataset for detecting and
classifying arrhythmia (Moody and Mark, 2001). It records 48
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two-lead ECG recordings collected from 47 subjects by the BIH
Arrhythmia Research facility. Each ECG recording is 30 min long,
and was sampled at 360 samples/second, employing an 11-
bit resolution, encompassing a range of 10 mV for digitization.
This dataset was compiled by the Massachusetts Institute of
Technology (MIT) and Boston’s Beth Israel Deaconess Medical
Center.

5.6 MIT-BIH atrial fibrillation database

This dataset records data from25 patientswithAtrial Fibrillation
conditions. Each ECG record is 10 h in duration and has two signals.
Each signal is sampled at 250 samples/second, employing a 12-
bit resolution, encompassing a range of 10 mV. Ambulatory ECG
recorders with a standard recording bandwidth of 0.1 Hz–40 Hz
were used to produce the recordings. This database serves as a
standard database for Atrial Fibrillation detection and classification
(Moody and Mark, 2001).

5.7 MIT BIH Normal Sinus Rhythm database

This dataset records eighteen 2-lead ECG recordings. The
patients for this database had no significant arrhythmias and
were aged between 20 and 50 years, with 5 being men and 13
being women. It serves as an authoritative database for detecting
and classifying Normal Sinus heartbeats (Moody and Mark,
2001).

5.8 MIT-BIH malignant Ventricular Ectopy
database

This database includes twenty-two 12-lead ECG readings. Each
reading has a duration of 30 min. It records data of patients who
experienced sustained ventricular tachycardia, ventricular flutter,
and ventricular fibrillation episodes. These recordings are only
rhythm annotated. They serve as the standard database for training
DL models to detect and classify the Ventricular Ectopy class of
heartbeats (Moody and Mark, 1990).

5.9 MIT-BIH supraventricular arrhythmia
database (SVDB)

The SVDB dataset enriches the MIT-BIH Arrhythmia Database
better to handle the Supraventricular (SV) arrhythmias class. It
holds 78 ECG recordings, each 30 min in duration. Each recording
contains two signals sampled at 250 samples/second, employing
an 11-bit resolution for digitization. For annotation, the database
includes symbols marking the points where heartbeats begin (the
R wave of the QRS complex) and symbols indicating the beat
type. In addition, the records include rhythm and signal quality
annotations. This dataset is well suited for training DL models
to detect Supraventricular (SV) arrhythmias (Moody and Mark,
1990).

5.10 Sudden Cardiac Death holter database
(SCDDB)

The SCDDB holds 23 recordings from 18 people with prior
conditions of prolonged Ventricular Tachyarrhythmia (VT),
Ventricular Fibrillation (VF), or Cardiac Death. The recordings
present in SCDDB are all snippets from lengthier ECG recordings.
This dataset contains data from 18 individuals with underlying sinus
rhythm conditions, four with subjects with intermittent pacing, one
with continuous pacing, and four with Atrial Fibrillation (AF). Most
patients whose data is recorded had experienced a confirmed cardiac
arrest, and all patients had a persistent ventricular tachyarrhythmia
complication. This dataset was recorded from several Boston area
hospitals around the 1980s.

5.11 Normal Sinus Rhythm RR interval
database (NSRDB)

TheNSRDB dataset was compiled by theWashingtonUniversity
School ofMedicine, St. Louis, and Rochelle Goldsmith of Columbia-
Presbyterian Medical Center, New York. This dataset serves as a
standard dataset for a ‘control’ group testing of arrhythmia detectors.
It complies with data from eleven male participants aged between
26 and 45 years and seven female participants aged between 20
and 50 years. The dataset presents eighteen long-term ECG records
of patients with no major arrhythmias complications. The ECG
recordings were digitalized at 128 samples/second. This database is
one of the most standard Normal Sinus Rhythm (NSR) detection
and classification databases.

5.12 Georgia 12-lead ECG Challenge
Database (GA12ECG)

The Georgia 12-Lead ECG Challenge Database was compiled
at Emory University, Atlanta, Georgia, United States. This dataset
contains data from 10,129 patients, producing 10,330 12-lead ECGs,
classified into nine categories based on the dominant rhythm.
The recordings were gathered from 5,551 male patients and 4,793
females. The recordings were sampled at 500 Hz and were recorded
for 10 s each. This dataset is widely used for its large number of data
points and patient pool.

5.13 Apnea-ECG database

Phillips University, Marburg, Germany, compiled the Apnea-
ECG Database (Penzel et al., 2000). It has a total of 70 records
split as follows 35 records for learning and 35 records for testing.
The length of each recording ranges from 7 h to about 10 h. Each
registration consists of a continuously digitalized ECG signal, a
collection of apnea annotations (conducted by human specialists
from respiratory and associated signals), and a group of machine-
created QRS annotations containing 70 records with an average
duration of 8 h from people with chances of sleep apnea conditions.
An ECG signal and a breathing signal with apnea annotation are also
included in every record.
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5.14 PTB diagnostic ECG database

Physikalisch-Technische Bundesanstalt (PTB), the National
Metrology Institute of Germany, compiled the PTB Diagnostic ECG
Database (Flores et al., 2018). It contains 549 records from 290
subjects (209 males and 81 females). The patients selected were aged
17 to 87, with the mean age being 57.2. Each record incorporates
fifteen data values that were simultaneously collected. The fifteen
data values are from the regular 12 leads and the leftover 3 Frank lead
ECGs. Each signal is sampled at 1,000 samples/second, employing
a 16-bit resolution, encompassing a range of ±16.384 mV for
digitization. On unique solicitation to the patrons of the information
base, accounts might be accessible at testing rates up to 10 KHz.
This dataset is suitable for a wide range of tasks, from arrhythmia
detection, automated diagnosis of heart conditions, and signal
quality assessment to anomaly detection.

5.15 European ST-T database

The CNR Institute for Clinical Physiology at Pisa and the
European Society of Cardiology compiled the European ST-T
dataset (Taddei et al., 1992). This dataset contains 90 ECG signal
records to assess ischemic coronary illness and various arrhythmias
and is used to examine ST andT-wave changes in ECG.The database
holds data gathered from seventy male participants aged between
30 and 84 years and eight female participants aged between 55 and
71. The dataset holds 401 T-waves and 367 ST segment episode
changes. Each episode records over 30 s, with peak displacements
ranging from 100 μV to 1 mV. Each record is 120 min long, with two
signals sampled at 250 samples/second, quantized with 12 bits over
a nominal 20 mV input range.

5.16 PhysioNet computing in cardiology
challenge 2017 (AFDB)

The AFDB dataset comprises 12,186 single lead ECG recordings
of 30 and 60 s long, gathered from subjects undergoing long-haul
mobile ECG checking. The dataset is divided into a training set
of 8,528 records and 3,658 as a test set. The dataset was compiled
by PhysioNet, an online database repository, using the AliveCor
healthcare device. The recordings were digitized continuously at
44.1 kHz and 24-bit goal utilizing programming demodulation.
At last, the recordings were put away as 300 Hz, 16-bit records
with a transfer speed of 0.5–40 Hz and a ±5 mV dynamic reach.
This dataset is rich for classifying different types of irregular heart
rhythms (arrhythmias) from single-lead ECGs (Andreotti et al.,
2017).

5.17 China physiological signal challenge
2018 (CPSC 2018)

The China Physiological Signal Challenge 2018 (CPSC 2018)
dataset (Liu et al., 2018), compiled by 11 hospitals across China,
encompasses 6,877 ECG recordings from a diverse group of subjects,
including 3,699males and 3,178 females.The recordings, which vary

in length from 6 to 60 s, are stored as MAT files, with accompanying
hea files providing labels and pertinent ECG recording information.
Each ECG recording is sampled at a frequency of 500 Hz. The
dataset is multi-labeled, with ECG recordings representing nine
distinct cardiac states, including Atrial Fibrillation (AF), Intrinsic
Paroxysmal Atrioventricular Block, Left Bundle Branch Block
(LBBB), Normal Heartbeat, Premature Atrial Contraction (PAC),
Premature Ventricular Contraction (PVC), Right Bundle Branch
Block (RBBB), ST-segment Depression (STD), and ST-segment
Elevation (STE). Notably, 476 of the recordings have two or
three different labels. This dataset serves as a valuable resource
for the development and evaluation of algorithms for rhythm
and morphology abnormality detection from 12-lead ECGs. Its
diverse and comprehensive nature makes it particularly suitable for
research in automated diagnosis of heart conditions, signal quality
assessment, and anomaly detection.

These datasets (Table 1) provide a comprehensive list of the
standard databases implemented for model training for ECG
arrhythmia detection and classification. The Association for the
Advancement of Medical Instrumentation (AAMI) recommends
training and detecting only a few types of arrhythmia. It
recommends using 15 classes for arrhythmia for model training.
These 15 classes are classified into five superclasses: Normal (N),
SupraVentricular Ectopic Beat (SVEB), Ventricular Ectopic Beat
(VEB), Fusion beat (F), and Unknown beat (Q). Table 2 presents
these superclasses. Most databases presented above stand as publicly
available standard datasets that have been used to train and validate
high-performance DL-based classification models. These models
will be discussed in the next section.

6 Results and discussion

This section provides a comprehensive intertextual
summarization of some of the best-performing recentDLmodels for
ECG arrhythmia detection and classification from 2017 to present.
We discuss DL models demonstrating high overall performance,
specifically those achieving over 96% in terms of accuracy,
sensitivity, specificity, and F1-score. To facilitate the understanding
of these models and to gauge their performances, we present two
tables: Tables 3, 4.

Table 3 comprehensively summarizes the best DLmodels within
the selected time frame. Column 3, abbreviated as #Cl., refers
to the number of arrhythmia classes considered in the multi-
class detection and classification model. This table also offers a
chronological summary of three performance metrics: Accuracy
(Acc), Sensitivity (Se), and Specificity (Sp) for each DL classifier.

Accuracy (Acc) is an essential performance measure in
classification problems. It assesses a model’s overall accuracy by
computing the proportion of total predictions the model correctly
predicted, including positives (arrhythmia) and negatives (no
arrhythmia). While accuracy gives a rapid overview of how well a
model performs, it does not provide precise details about how well
it performs on particular classes, which is especially important when
the dataset is imbalanced.

Sensitivity (Se), or the True Positive Rate (TPR), is the
proportion of actual positives (arrhythmias) correctly recognized by
the model. It is critical in medical diagnostics since high sensitivity
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suggests the model can reliably detect arrhythmias, lowering the
possibility of false negatives. A model with inadequate sensitivity
may fail to detect critical abnormalities, potentially resulting in
serious health consequences.

Specificity (Sp), also known as the True Negative Rate (TNR), is
the proportion of real negatives (no arrhythmias) that are accurately
detected. In essence, it indicates the model’s ability to prevent
incorrect diagnosis. This property is significant because a poor
specificity model may result in unnecessary treatments or tests due
to many false positives. This metric is important when gauging the
overall reliability of a model.

Taken together, these three metrics: accuracy, sensitivity, and
specificity, provide a more holistic and nuanced view of the
performance of a DL model in the context of ECG arrhythmia
detection and classification. They provide a balanced evaluation
that accounts for overall performance and the accuracy of class
identification, ensuring that the model performs well across all
categories and does not overlook any one category.

The DL models proposed for ECG signal classification have
adopted different pathways, each with distinctive features and
limitations. Several approaches rely on the notion of patient-
specific models for improved accuracy (Luo et al., 2017). employs
an automatic feature abstraction and a deep neural network
classifier to detect and classify arrhythmia. However, their approach
requires extensive computation and other individually annotated
beats as inputs (Zhang et al., 2017). shares this limitation and
proposes a model based on RNNs and a density-based clustering
technique limited by the unbalanced classes in the dataset.
On the other hand (Majumdar and Ward, 2017), proposed a
method called robust deep dictionary learning, and Xia et al.
(Xia et al., 2017) adopted the stationary wavelet transform for ECG
preprocessing to fit the requirements of deep convolution neural
networks. These methods, however, are challenged by the long
feature extraction time and dependency on the accuracy of peak
detection.

Innovative implementations such as the use of ECG images
for classification (Jun et al., 2018), bidirectional LSTM networks
(Yildirim, 2018), and hybrid combinations of RNNs and CNNs (Lui
and Chow, 2018) have also delivered promising results. However,
these innovative methods need help integrating their technologies
into a comprehensive system, dealing with the time cost of the
training phase and possible overfitting due to small sample sizes
restrained by their choice of dataset.

Meanwhile (Nguyen et al., 2018), focuses on Software
Composition Analysis (SCA) detection using a CNN for feature
extraction and a boosting classifier. In contrast (Sannino
and De Pietro, 2018), propose a Deep Neural Network for
abnormal ECG beat classification. They have delivered impressive
results using minimal DL models consisting of only seven
low-complexity layers. As stated by most of the works, they
claim improved model performance using additional, balanced
datasets.

Several works focus on detecting Atrial Fibrillation (AF),
one of the significant occurring types of arrhythmias, as in the
work of (Faust et al., 2018), where a hybrid DL system merged
with an LSTM model was used on Heart Rate (HR) signals.
This approach is promising but suffers from instrumentation
limitations. Moreover (Wang et al., 2019), propose a globally
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TABLE 2 Classes of ECG Signals used to training.

Superclass

N SVEB VEB

(Nou.) Normal Beat (A) Atrial Premature Beat (V) Premature Ventricular Contraction

(L) Left Bundle Branch Block Beat (a) Aberrated Atrial Premature Beat (E) Ventricular Escape Beat

(R) Right Bundle Branch Block Beat (J) Nodal (Junctional) Premature Beat

(e) Atrial Escape Beat S Supraventricular Premature Beat

(j)Nodal (Junctional) Escape Beat

Superclass

F VEB

(F) Fusion of Ventricular and Normal Beat (Pou) Paced Beat

(f) Fusion of Paced and Normal Beat

(U) Unclassified Beat

TABLE 3 Summary of deep learningmodels for ECG arrhythmia detection and classification.

Study Database # Cl Classifier Acc (%) Se (%) Sp (%)

Luo et al. (2017) MIT-BIH 4 DNN-SDA 98.80 71.40 99.80

Majumdar and Ward (2017) MIT-BIH 4 SVM-RBF 97.00 100.0 90.12

Zhang et al. (2017) MIT-BIH 5 RNN 99.40 97.60 99.70

Xia et al. (2017) MIT-BIH 3 CNN 98.63 98.79 97.87

Nguyen et al. (2018) CUDB MIT-BIH (VFDB) 2 FCN 99.26 97.07 99.44

Jun et al. (2018) MIT-BIH 4 2D CNN 99.05 99.57 97.85

Yildirim (2018) MIT-BIH 4 Bi-directional LSTM 99.39 95.66 98.11

Sannino and De Pietro (2018) MIT-BIH 4 DNN 99.68 99.48 99.83

Faust et al. (2018) MIT-BIH 5 BiLSTM 98.51 98.32 98.67

Xia and Xie (2019) MIT-BIH 4 1D CNN + Active Learning 99.20 95.73 98.73

Lui and Chow (2018) MIT-BIH 4 ML-CNN 96.00 95.40 97.37

Xia et al. (2018) MIT-BIH Wearable Device 4 DNN 99.80 99.40 99.90

Wang et al. (2019) MIT-BIH 2 GRNN 97.40 86.70 98.30

Hanbay (2019) MIT-BIH 4 DNN 96.40 86.41 96.41

Wang and Zhou (2019) BIDMC-CHF + MIT-BIH NSR + Fantasia 5 LSTM 99.22 99.22 99.72

Chen et al. (2020) MIT-BIH 4 CNN-LSTM 99.32 97.50 98.70

Fu et al. (2020) PTB 6 CNN-BiGRUt 99.11 99.02 98.23

Sharma et al. (2021) MIT-BIH 5 SVM + FFBPNN 98.53 98.24 95.68

Ojha et al. (2022) MIT-BIH 4 CNN-SVM 99.53 98.24 97.58

Sepahvand and Abdali-Mohammadi (2022) Chapman ECG DB 12 Distilled Models 98.15 97.11 98.45

Midani et al. (2023) MIT-BIH 5 CNN + BiLSTM 99.46 97.01 99.57

Kumar et al. (2023) MIT-BIH 5 Fuzz-ClustNet 98.66 98.92 93.88

applicable and updatable classification model, the Global Recurrent
Neural Network (GRNN), which used active learning to learn
informative beats and enlarged its training set to improve its
performance.

There have also been works aimed at integrating wearable
technologies for arrhythmia detection and classification, as seen
in (Xia and Xie, 2019), who introduced a wireless wearable
ECG device that combines an ECG acquisition device and ECG
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TABLE 4 F1-scores of deep learningmodels for ECG arrhythmia detection and classification.

Study Database # Cl Classifier F1-Score(%)

Luz et al. (2016) MIT-BIH 5 GRNN 99.00

Sujadevi et al. (2017) MIT-BIH 4 GRU 99.99

Faust et al. (2018) MIT-BIH 5 BiLSTM 98.00

Tan et al. (2018) Fantasia + INCARTDB 2 CNN-LSTM 99.52

Xiang et al. (2018) MIT-BIH 8 1D CNN 99.99

Hammad et al. (2020) MIT-BIH 5 DNN 95.30

Mahmud et al. (2020) MIT-BIH 5 1D CNN 99.10

Ullah et al. (2020) MIT-BIH 8 2D CNN 98.00

Peimankar and Puthusserypady (2021) QT DB 4 CNN-LSTM 99.56

Islam et al. (2022) MIT-BIH 5 BiGRU + BiLSTM 98.41

Hong et al. (2022) MIT-BIH 4 ECG Delineator 96.11

Zahid et al. (2022) MIT-BIH 5 1D Self ONN 99.51

Kim et al. (2022) MIT-BIH 5 ResNet + BiLSTM 99.20

Sepahvand and Abdali-Mohammadi (2022) Chapman ECG DB 12 Distilled Models 97.55

Midani et al. (2023) MIT-BIH 5 CNN + BiLSTM 97.63

Kumar et al. (2023) MIT-BIH 5 Fuzz-ClustNet 96.34

classification method in a CNN framework. However, despite the
promising performance, the primary challenges in their model
include computational intensity and the necessity for R-peaks
detection. The development of wearable ECG technology has been
significant, but bottlenecks such as the need for high precision,
low power consumption, and efficient systems persist. The future
prospects for wearable ECG learning involve addressing these
challenges and further optimizing the technology for real-time,
efficient, and precise disease warning.

An active deep learning-based classificationmethod is proposed
by (Hanbay, 2019). This work determines six statistical features for
each heartbeat and combines them with the eigenvalues of ECG
beats.Despite the novelty, a notable drawback is the time-consuming
feature learning phase and the effect of temporal waveform patterns
on feature extraction.

Similar research on ECG classification was carried out by
(Chen et al., 2020), where the authors integrated CNN and LSTM
models to identify six types of ECG signals. The increased diversity
of subjects in the training data helped to achieve a high accuracy rate.
Nevertheless, their approach requires QRS detection, adding to the
computational cost, and utilizes an imbalanced dataset, which led to
low classification accuracy for the atrial flutter (AFL) category.

On a different perspective (Wang and Zhou, 2019; Sharma et al.,
2021), focused on healthcare applications and heartbeat
abnormalities, respectively (Wang andZhou, 2019). used short-term
HRV in conjunction with mobile devices for monitoring patients’
health but acknowledged the need to address data imbalance issues
in future work. Meanwhile (Sharma et al., 2021), proposed an
efficient hybrid approach for classifying ECG samples into crucial
arrhythmia classes, suggesting that their work could be extended to
cover more arrhythmia classes in the future.

Several other works have sought to improve ECG signal
classification using sophisticated models. For instance (Ojha et al.,
2022), implemented a 1D-CNN model based on an Auto-encoder
Convolution Network (ACN). Similarly (Sepahvand and Abdali-
Mohammadi, 2022), utilized knowledge distillation for arrhythmia
classification. Implementing distillation models in this field is novel
and shows promise. However, in this work, the choice of the CNN
model and hyperparameters may not be optimal.

A recent study by (Midani et al., 2023) suggests a novel
methodological approach that combines feed-forward and recurrent
deep neural networks using a sequential fusion method. This
approach aims to better represent relevant features of arrhythmia
in ECG signals. However, their method relied on a small
database for training and testing and used R peak segmentation
based on dataset annotation (Kumar et al., 2023). puts forward a
technique called Fuzz-ClustNet, which combines deep learning and
fuzzy clustering for detecting arrhythmia. This method relies on
denoising, augmentation, and segmentation.

Despite the promising results, these studies face numerous
limitations and challenges, including the need for extra individually
annotated beats, class unbalances, long feature extraction time,
under-representation of specific ECG beat types, limited access to
rich databases, the time cost of the training phase, dependence
on the accuracy of peak detection, and issues with unnecessary
defibrillation. These limitations highlight the need for more robust
and accurate DL models for ECG signal classification.

Table 4 extends the analysis by presenting the F1 Scores of the
methods. The F1 score is a widely used measure that considers
precision and recall, providing a balanced assessment of model
performance. Like Table 3, the models in Table 4 also include the
#Cl. Column indicating the number of arrhythmia classes handled
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by themodel are categorized based on the 96% cutoff. Incorporating
the F1 score in our analysis enhances our understanding of
the model’s effectiveness in accurately identifying and classifying
arrhythmias. By integrating the information from both tables, we
aim to offer a holistic overview of the significant strides made by
DL models in this domain.

Table 4 further explores DL methods with promising results
for ECG arrhythmia detection and classification. Research has
explored various methods for detecting arrhythmia, including
Fuzz-ClustNet, fuzzy clustering, and a deep learning framework
(Kumar et al., 2023). One approach, called ‘DeepArr,’ combines
feed-forward and recurrent neural networks to improve accuracy
(Midani et al., 2023). Both methods, however, are bound by
certain limitations. While Fuzz-ClustNet could benefit from more
sophisticated signal processing methods, DeepArr’s reliance on the
smallMIT-BIH arrhythmia database for training and testing reduces
its generalizability.

These limitations resonate with the issues encountered in other
studies, such as the works of (Kim et al., 2022; Sepahvand and
Abdali-Mohammadi, 2022), which leverage advanced DL models
for ECG classification but admit potential shortcomings in their
design, specifically in the optimal selection of layers, filters, and
hyperparameters in the former and the generalization capability of
the latter.

A similar narrative is carried forward in the studies of
(Hong et al., 2022; Zahid et al., 2022). Zahid et al. introduced a 1D
Self-Organizing Neural Network (ONN) for ECG classification.
The goal is to learn morphological representations from ECG
data automatically, but the authors also recognize the possibility
of enhancing the model’s complexity. Hong et al.‘s clinical ECG
interpreter, in the meantime, grapples with the issue of ECG data
acquisition and heterogeneous data formats, a problem akin to the
lack of benchmark datasets lamented by (Islam et al., 2022) in their
RNN-based arrhythmia classification study.

While (Ullah et al., 2020; Peimankar and Puthusserypady, 2021)
have successfully proposed DL models that eliminate the feature
engineering step and extend ECG classification to more classes,
they also echo the recurring theme of ECG waveform delineation
challenges and the necessity of a more extensive and more diverse
dataset. This sentiment of data insufficiency extends to DeepArrNet
(Mahmud et al., 2020) and multitier DNN (Hammad et al., 2020),
with the latter indicating the method’s susceptibility to noisy signals
and data-intensiveness.

Intertextual analysis of the gathered literature provides pivotal
insights into current research trajectories and their respective
constraints. Established works indicate that the limitations imposed
by the lack of size and diversity in the databases surpass those
dictated by the choice of learning algorithm (Torralba and Efros,
2011). The need for more extensive and more balanced datasets
and efficient, less time-consuming models resonates across the
research landscape. Examining the key themes emerging from the
literature underscores the critical role of data quality, the utilization
of public ECG databases, and the issue of data imbalance in ECG
databases.

First, data quality is critical for attaining excellent classification
performance, as deep learning models rely primarily on
robust and diverse training data. Access to various ECG data,
including all genders, ages, and health problems, is essential.

The dependence on public ECG datasets, although necessary at
present, has several limitations, with the need for more diverse
data samples being apparent for improving the models’ clinical
applicability.

Second, while the MITDB database serves as a comparison
baseline for new and existing deep learning approaches, model
complexity is rising, necessitating more comprehensive ECG data
for practical training. The recent trend of merging data from
several public ECG databases demonstrates this requirement,
even though it necessitates carefully evaluating variances in
patient demographics, measurement circumstances, and signal
characteristics.

Finally, a significant imbalance in data categories in current
arrhythmia-related ECG databases, with an overrepresentation
of ‘normal’ categories, presents an additional hurdle. Although
numerous approaches, including data augmentation (Ma et al.,
2022) and focal loss (Li et al., 2022), have been used to solve
this problem, acquiring new data in the aberrant categories is the
most practical answer. However, the practical problems connected
with this approach, such as the availability of particular patient
groups, highlight that the imbalance in ECG datasets remains a
formidable long-term challenge for researchers (Nurmaini et al.,
2020a). Together, these characteristics provide insight into the
complexities of the ECG arrhythmia classification process and
indicate areas where further effort and innovation are needed to
advance the field.

The task of arrhythmia detection and classification represents
a multifaceted multiclass classification problem. Studies utilizing
databases such as MIT-BIH, CUDB, and AFDB focused on the
classification of the N, SVEB, VEB, F, and Q superclasses (refer
to Table 2) and detection of significant types of arrhythmias
like Atrial Flutter, Atrial Fibrillation (AF), and Ventricular
Fibrillation. In contrast, studies utilizing PhysioNet/CinCChallenge
datasets focused on the classification and detection of AF, NSR,
and other rhythms by taking noise into account. Furthermore,
several studies underline the possible impact of patient-specific
characteristics on arrhythmia types, including age and gender,
emphasizing the significance of tailored detection and classification
methodologies (Haleem et al., 2021). As a result, this broader
perspective on arrhythmia classification research emphasizes the
multifaceted nature of the problem and the need for tailored
solutions.

Traditionally, CNNs are considered the top DL models for
ECG classification due to their exceptional feature extraction
abilities (Ansari et al., 2022a). Meanwhile, RNNs have also
shown great potential in this area by catering to the time
series nature of ECG signals. The advent of transformers
equipped with attention mechanisms represents a significant
progress in DL models, with initial studies showing promising
results.

Performance analysis of the compiled research shows that
hybrid DL models, specifically transformers, perform better than
traditional shallow DL models in classifying ECG arrhythmias.
Most hybrid DL models for arrhythmia classification use CNNs
as the first feature extractors, followed by more precise feature
extraction using additional DL structures such as RNNs and
transformers (Zhu et al., 2022). While these hybrid models excel in
classification, they increase computational complexity (Tan et al.,
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2018; Oh and Lee, 2022), which is a concern. Currently, the
research emphasizes combining newer DL models or structures
for arrhythmia classification, such as Vision Transformers (ViT)
(Han et al., 2022) and MLPMixer (Tolstikhin et al., 2021) with
traditional DL models. However, this trend is in its early
stages.

In addition, the focus on enhancing classification accuracy
overlooks the importance of having interpretable DL models.
Such models offer clarity to the ECG classification outcomes
and could be highly beneficial in clinical situations. They can
help better diagnose heart irregularities and uncover concealed
ECG signal characteristics. Incorporating DL models into other
artificial intelligence frameworks like active learning (He et al.,
2022) and reinforcement learning (Xiao et al., 2023b) might
considerably improve ECG diagnostic accuracy. Furthermore,
systematic optimization of DL model architectures, such as
convolutional kernel sizes and hyperparameters, such as minibatch
size and learning rate, should improve ECG classification
efficiency.

When dealing with an increased number of classification
categories, the mapping relationship’s complexity and data scarcity
in minority categories presents formidable challenges (Zhao et al.,
2022). Innovative strategies such as the Hybrid Attention-Based
Deep Learning Network (HADLN) (Jiang et al., 2021), a depthwise
separable convolutional neural network with focal loss (Lu et al.,
2021), and a novel approach for atrial fibrillation classification based
on the 2D representation of minimal subset ECG (Zhang et al.,
2023) have shown promise in addressing these challenges. Exploring
such strategies and pushing the bounds of hybrid models might
enhance the learning capabilities of the DL process, allowing for
correct classification performance for even more categories. The
path towards improving the state-of-the-art in ECG arrhythmia
classification and detection seems to be through constant
innovation, integrating novel methods, and optimizing existing
ones.

7 Guideline

We propose a comprehensive, systematic, and standardized
workflow pipeline that is instrumental in furthering research
activities, addressing prior limitations, and standardizing the clinical
evaluation process. This pipeline serves as a cardinal guide for
researchers when developing and evaluating deep learning (DL)
models specifically for heartbeat arrhythmia classification. It is
crucial to stress that these recommendations work best in heartbeat
classification settings when feature extraction and classification are
carried out in discrete steps. Different issues may apply, requiring a
changed strategy, for detection systems incorporating arrhythmias
like AF or VF, which require segments as input and permit end-to-
end learning.

1. Database selection stage:

• Use the standard MIT-BIH database, which includes the
suggested standard metrics. This choice allows for impartial
comparisons with previous studies.

• Examine the model’s generalization capabilities by
including the INCART database into the assessment
procedure (Llamedo and Martínez, 2010).

2. Preprocessing stage:

• Use standard signal filtering techniques to permit direct
comparisons with current literature.
• Employ the unfiltered raw signal as the ground truth to

correctly assess the model’s performance.

3. Segmentation stage:

• Introduce jitter to the R-location annotation throughout the
assessment procedure to measure the model’s robustness
(Llamedo and Martínez, 2010).

4. Feature extraction stage:

• Utilize state-of-the-art feature selectors to extract salient
features (Pudil et al., 1994; Llamedo and Martínez, 2010;
Mar et al., 2011; Zhang et al., 2014).
• The use of class-oriented feature selection can

provide useful insights into selecting significant
features for various forms of arrhythmia (Zhang et al.,
2014).

5. Classification stage:

• Implement a k-fold cross-validation training pipeline to
ensure unbiased model training.
• Address dataset imbalances associated with certain

heartbeat types by using data augmentation techniques
or specialized classifiers such as LSTM networks.

6. Evaluation stage:

• Employ standardized metrics to enable fair and unbiased
comparisons between the proposed methodology and
existing literature.

In summary, the extensive exploration of deep learning and
machine learning techniques, combined with novel methods such
as knowledge distillation and feature vector optimization, have
shown encouraging results in arrhythmia detection. Despite the
encountered limitations, these studies demonstrate the promise
of DL methods for ECG signal classification. These innovative
approaches offer novel solutions and show considerable potential
for further development. Future research should address these
limitations, including the development of personalized detection
and classification methods, balanced and comprehensive datasets,
optimal selection schemes of model parameters, and the effective
incorporation of necessary components like denoising and
augmentation to achieve superior performance. In addition,
exploiting additional data modalities through intelligent data fusion
and processing techniques capable of self-learning and adapting
in real-time to a person’s specific characteristics and status remain
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fundamental problems. By doing so, we can more fully exploit the
potential of these methods for practical application in healthcare
monitoring and diagnosis.

8 Conclusion

Deep learning (DL) algorithms have demonstrated enormous
prospects for arrhythmia detection utilizing ECG data,
demonstrating the significant potential for clinical implementation.
However, our review provides tailored suggestions for novice
researchers to assimilate them with the necessary knowledge
and trends of the field. We discuss recent research trends and
address several crucial DL pipeline components that require
further exploration before its clinical implementation for ECG
arrhythmia categorization. We emphasize the need to focus on
using various ECG databases for model training and validation
and developing unique integrated DL models. These directions
offer prospects for developing DL-based ECG arrhythmia
classification models and encouraging their adoption in clinical
practice.
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