Course Specification

RARD636: Monte Carlo in Radiation Therapy

Institution Name: Mahidol University

Campus/Faculty/Department: Faculty of Medicine Ramathibodi Hospital, Department of

Diagnostic and Therapeutic Radiology

Section 1: General information

1. Course number and name

Course number: RARD 635

Course name: Advanced Imaging for Radiation Therapy

2. Credits: 1(1-0-2)

3. Curriculum and type of course

3.1 Curriculum: Advanced Imaging for Radiation Therapy

3.2 Type of course: Elective course

4. Instructors

4.1 Course Coordinator: Lect.Dr.PuangpenTangboonduangjit

4.2 Instructors

Lect.Dr.PuangpenTangboonduangjit

5. *Semester/Year:* 1stSemester, Academic Year 2020, 2ndyear students

6. *Pre-requisite:* RARD 524 Physics of Radiation Therapy

RARD 628 Advanced techniques for Radiotherapy

7. *Co-requisite:* None

8. *Classroom:* To be announced

9. **Revision Date:** Nov 2019 **By:** Committee

Note: Revised course learning outcome, course description, and evaluation

Section 2: Purpose and objective

1. Course Learning Outcomes

Understand and perform the Monte Carlo code and apply the simulation to the radiation machine and radioactive source

Section 3: Course details

1. Course description

Physics of CT-simulator, 4D-CT, and MRI-simulator images; image-guided radiotherapy using CBCT or MVCT; imaging applications for contouring, registration, treatment planning, and delivery

2. *Hours per semester:* Lecture 15 hours

3. Assignment feedback: Within 2 weeks

Section 4: Course Learning Outcomes

Course level learning	Programme level	Methods	Assessment
outcomes	learning outcomes		
Understand and	ELO 2, 6	-Lecture	- Paper Examination
perform the Monte		-Demonstration	- Assignment
Carlo code and apply		-Hands on	
the simulation to the			
radiation machine and			
radioactive source			

Section 5: Lesson plan and assessment

1. Lesson plan

Time	Topics	Instructors	Method	Assessment
3	Basic principles	Lect.Dr.PuangpenTangboonduangjit	Lecture/	Paper exam
	of the Monte		Demonstration	
	Carlo method			
	in medical			
	radiation			
	physics and the			
	simulation			
	efficiency of			
	Monte Carlo			
2	Monte Carlo	Lect.Dr.PuangpenTangboonduangjit	Lecture/Hands on	
	code I			

Time	Topics	Instructors	Method	Assessment
2	Monte Carlo	Lect.Dr.PuangpenTangboonduangjit	Lecture/Hands on	
	code II			
2	The simulation	Lect.Dr.PuangpenTangboonduangjit	Lecture/Hands on	Assignment
	of linear			
	accelerator			
	machine			
2	The simulation	Lect.Dr.PuangpenTangboonduangjit	Lecture/Hands on	
	of charged			
	particle			
	machine			
2	The estimation	Lect.Dr.PuangpenTangboonduangjit	Lecture/Hands on	
	of the dose			
	distribution in			
	the patient			
2	The simulation	Lect.Dr.PuangpenTangboonduangjit	Lecture/Hands on	
	of radioactive			
	sources			

2. Measurement and Evaluation of Student Achievement

2.1	Theory (short answer questions)	40%
2.2	Assignment	60%

Section 6: Assessment and improvement of the course operation

- 1. Strategies to assess the effectiveness of the courses by the students
 - Assessment of instructor's teaching by student
- 2. Strategy to assess the instruction
 - Assessment of students' learning records
 - Assessment of instructor's teaching by student
- 3. Improvement of Instruction
 - Consider the students' learning records
 - Consider the students' assessment of instructor's teaching
 - Consider the program committee's comment
- 4. Verification of student achievement in the subject
 - By program committee and faculty-level academic committee
- 5. Review and action plan to improve the effectiveness of the course
 - Using the results from 1 4 as inputs to the instruction improvement

Learning Resources

1. Joao Seco and Frank Verhaegen. Monte Carlo techniques in radiation therapy. CRC Press, Taylor & Francis Group 2013.